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1 Basic Facts and History of T-310

T-310/50 is an important historical cipher designed and built by crypto engineers
from East Germany in the 1970s. It is known to a larger English-speaking public
since a paper published in Cryptologia in 2006 [76]. It was subsequently used to
encrypt teletype communications during the last period of the Cold War. T-310
is known as being probably the “most important” cipher of that period and in
1989 there were some 3,800 cipher machines in active service across all sorts of
government, party and internal security services [46, 76].

1.1 Chronology on T-310

Based on [45] we present here a short chronology on T-310 encryption machines:

1973 First specification of the tactical technical requirements for the T-310[...]
Basic cryptological requirements: “Quasi-absolute security”.

1974 Construction of a new cryptographic algorithm. Two mathematician cryp-
tologists were commissioned for 1 year.

1976 T-310/50 teletype encryption device, T-310/80 data encryption device.
1980 Cryptological investigation of the security of the encryption process by cryp-

tologists of the ZCO and the Soviet cryptologists. Finding that the DES has
nothing in common with the encryption algorithm ALPHA.

1982 Put into serial production.
1984 The average monthly output of the T-310/50 amounted to 60 devices.
1986 Between 1984-86 there were 290 repairs, of approx. 1400 delivered devices.
1987 Presentation of the T-310/50, as a national encryption device, at the meeting

of the ciphering services of the Warsaw Treaty.
07/89 Computer connection to the T-310/50 by telex card ATW in the BC 5120
11/89 There were in employment 3,835 machines of type T-310/50 and 46 machines

of type T-310/51.
1990 Last change of the long-term key, use of the LZS-33.
1990 25.07.1990 Publication of the T-310 in the city halls of Berlin with politics

and television.
1990 Analysis of the encryption algorithm by the BSI, unofficial statement: ex-

tremely secure. Official statement: not authorized to say anything about it.
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2 A Block Cipher in A Stream Cipher Mode

T-310 is a synchronous stream cipher which derives its keystream from an iter-
ation of a relatively complex block cipher.

Fig. 2.1. T-310 Encryption Process.

T-310 contains an LFSR. However we cannot really hope to apply attacks on
LFSR-based stream ciphers [24, 31], in T-310 the state of the LFSR is known to
the attacker and is used to expand the IV into a longer sequence. In addition, in
contrast to many LFSR-based stream ciphers, the main iterated component in
T-310 is non-linear. It is simply an iterated block cipher with a relatively simple
key schedule.

Overall, the main component to study in this paper is a keyed permutation
which also takes an IV which we will call “the T-310 block cipher”. The block
size is only 36 bits, the secret key has 230 bits plus 10 parity bits, and the IV
has 61 bits. The block cipher is not used directly to encrypt, but it is iterated
a large number of times: Some 13 · 127 = 1651 rounds of the block cipher are
performed1 in order to extract as few as only 10 bits from the cipher internal
state, which will be used to encrypt just one 5-bit character of the plaintext.

It appears that many techniques which have been traditionally developed in
cryptanalysis of block ciphers cf. for example [9, 7, 34, 38, 32] should and will to
some extent apply to T-310. For example, there exist techniques which break
any cipher, if not too complex, cf. [9, 30, 31, 18, 79, 16]. Unhappily T-310 is quite
complex.

1 According to page 17 in [80], the round clocking frequency is 76.8 kHz which gives
an encryption speed of about 46.5 characters per second.
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3 Feistel and Generalized Feistel Ciphers vs. T-310

As a first approximation, and this is as we will see later, only a first vague (and
inexact) classification, it appears that this block cipher belongs to the family of
so called “Contracting Unbalanced Feistel ciphers” with 4 branches, cf. [65] and
Fig. 4.3 below.

Fig. 3.2. A “Contracting Unbalanced Feistel” cipher with k Branches.

The construction of ciphers has a rich history which can be seen as developing
many different ways to produce key-dependent permutations from composition
of smaller building blocks which most of the time do not need to be permutations.
The original Feistel cipher2 had 2 branches and was invented around 1971 [48,
49]. Then East German cipher designers have already in 1970s [76] mandated
a substantially more complex internal structure which can be seen as a very
peculiar sort of “Contracting Unbalanced Feistel” which should be studied in
the context of other similar ciphers known in crypto history and in academic
literature3.

3.1 T-310 vs. Other Contemporary Block Ciphers

An important historical example of exactly a “contracting” cipher with 4 branches
and a near-contemporary of T-310 is the RC2 cipher by Rivest which was de-
signed in 1989 cf. [61] with an (alleged) collaboration with the NSA. RC2 have
been very widely used worldwide for real-life communications security, first in
Lotus Notes software and later also in S/MIME encrypted email standard of
1997. Another more academic example of (exactly) a compressing cipher with
4 branches is McGuffin cipher proposed by Bruce Schneier and Matt Blaze at
FSE’94 which cipher was immediately broken during the same conference [73].
The earlier RC2 has remained a trade secret for a longer time and only in

2 Which is to date, probably the most popular block cipher construction ever invented.
3 There exist countless generalizations and extensions of Feistel schemes, cf. [67, 65,

66, 57].
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1997-1998 it was re-discovered and analysed (without great success) in crypto
community [61]. Another important historical cipher with a very large real-life
footprint which is still used today by millions of people is a block cipher which
is used inside the SHA-1 hash function. SHA-1 is “Contracting Unbalanced”
Feistel with 5 branches. It was developed by the US-government funded Cap-
stone project which began in 1993 and which aimed at developing a full suite
of long-term crypto algorithms with 80-bit security. The Capstone project has
also produced the well-known Skipjack algorithm. Skipjack is unique type of
cipher with 4 branches which are neither contracting nor expanding [66] sort
and more like local application of the basic Feistel with only two branches at
one time, with a lot of extra irregular structure [58]. A report from 2011 reveals
that Skipjack has been designed by the NSA earlier in the 1980s with “building
blocks and techniques that date back more than forty years” [5].

Skipjack and T-310 share the same characteristic of being so called “Type
1” ciphers, which are intended to protect classified information and government
communications. The design and specification of such ciphers is expected to be
confidential4. However eventually ciphers will be declassified, e.g. Skipjack, their
spec leaks out, e.g. RC2, or they become obsolete and the spec can be found in
government archives, e.g. T-310. The overall result is that these ciphers can
eventually be studied by security researchers.

3.2 Weak or Strong - Cryptanalysis

The theory of “contracting” Feistel ciphers indicates that such ciphers update the
internal state quite slowly and therefore require a larger number of rounds to be
secure than Feistel ciphers with 2 branches [65]. With very strong round functions
this theory would recommend at least 8 rounds for a cipher with 4 branches [65],
which however is by far insufficient for any cipher build with more realistic
(simpler/faster and substantially weaker) components. Most of the ciphers we
have mentioned above have a very substantial number of rounds and to the
best of our knowledge they achieve a very decent level of security. Even though
Lotus Notes software has been an object of a number of controversies regarding
deliberate weakening by the NSA, no convincing attack has been published to
date against RC2 cipher [61]. Similarly, to this day there is no attack on the
full Skipjack cipher cf. [58] and the SHA-1 when used in encryption is also
quite robust [62]. Finally, until now, no attack of any sort whatsoever have been
published on the T-310 cipher. In this paper we provide a first analysis of T-310.

4 This means that they will be also subject to export restrictions, and also that publi-
cation of research articles or press reporting can be prohibited (e.g. with court orders
or under former UK DA rules).
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4 Feistel Ciphers and High-Level Structure of T-310

A classical unbalanced Feistel scheme in the contracting family [65] is as follows.

Fig. 4.3. A Contracting Unbalanced Feistel cipher with k = 4 branches.

Now T-310 is potentially a lot more complex. All depending on the so called
“long-term key” or the internal wiring which takes a form of a plug-in card cf.
[45]. The original term is LZS which is an abbreviation of Langzeitschlüssel as
opposed to weekly/daily keys “ZS” of Zeitschlüssel which are perforated cards
(with holes punched in them). The LZS would be changed roughly once per year,
cf. [44] or only when “necessary” cf. [45].

The main part of an LZS (formal definition below) are two functions D and
P which specify two sets of connections. These D,P could be compared to the
P-box in DES (which however never changes) or to a Stecker in an Enigma
machine (which however would be changed daily). Interestingly, the P-box in
DES would be just an internal part at the output of a round function T (), while
here D and P have extra powers: a possibility to alter the structure of Fig. 4.3 in
a very substantial way 4.3. In T-310 D and P work on both inputs and outputs
of T (). Depending on the exact values of D and P , we will be deviating more
or less, or not at all, from a classical unbalanced contracting Feistel with four
branches in Fig. 4.3.

4.1 Long-Term Keys - Notation

In this paper we denote an interval of type {1, . . . , 9} by a short notation {1−9}.
Similar but different than the notation 1− 9 used in [80].

Definition 4.1.1 (LZS). We call an LZS which is an abbreviation of German
Langzeitschlüssel cf. Appendix A, a triple (D,P, α) where D : {1−9} → {0−36},
P : {1− 27} → {1− 36} and α ∈ {1− 36} which will be studied in Section 14.1.

In addition to basic functions D,P, T , in this paper we will also use notations
D, T and P which are expect to be derived or constructed from the D,P, T
respectively and the exact definition of which will be different in different parts
of this paper. For example in the next Section we have D : IF9

2 → IF9
2 cf. Fig. 4.4

which will be D and which re-arranges the order of wires as specified by D. In
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most places in this paper we will actually have D : IF9+1
2 → IF9

2 as depicted on
Fig. 5.5, but will also consider for example D : IF9+3

2 → IF9
2 cf. Section 5.5. The

main point of these new notations is to rewrite the cipher description in a new
way with new particularly compact notations due precisely to introduction of
D, T and P, and the full formal description of how this works to define a round
of a block cipher in a typical setting will be done later in Section 7.1.

4.2 The Importance of Long-Term Keys

Different long-term key wiring functions D and P can make T-310 operate in
many different ways. There exist several classes or types of LZS. Historical doc-
uments shows clearly that similar to DES [8, 6], T-310 is an extremely carefully
designed cipher in terms of how the information propagates inside the cipher.

This is due to the LZS wiring precisely. The historical LZS literature contains
tens of pages of detailed analysis and many strong mathematical and combina-
torial properties are mandated or shown to hold for specific types of LZS. This
has a very strong effect on the entropy of LZS. Initially if we assume that D,P
should be injective5 the number of possibilities for P is 36!/9! and for D it is
36!/27!. Overall the entropy of an injective choice of (D,P ) is about 164.6 bits.
Interestingly, the designers have imposed so many very strong requirements on
(D,P ) cf. for example Appendix B, that they have reduced this space to at most
94 bits of entropy, cf. Section 8.5. There also exist a number of special anomalous
keys listed in [44]. In this paper we also consider some special keys in Section
F.2 and E.1.

4.3 Basic LZS Classification

In this paper many different parts are concerned with study of how the choice of
LZS affects the T-310 block cipher and it security. We first look at theory and
high-level structural questions here in Sections 4.4-5.5 below, then in Section 5.
Then in Section 8 we discuss main historical key classes KT1/KT2 used in the
real life with KT1 being the “main” historical version. There is strong evidence in
that some 7 keys of type KT1 have been used in practice in the period of 1979-
1990, cf. Section 8 and [44]. Then in Section 11, Section 18 and in Appendix
C and D we study how the choice of LZS affects the properties of the round
function. Finally we study also a number of anomalous special keys in Section
18 and in Appendix E and F.

5 This is in principle mandatory in T-310, cf. page 115 of [80]. Not true for the so
called “testing key” 17 from 1979 which has P (25) = P (26), cf. [44].
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4.4 Unbalanced Feistel Reinforced with a Permutation

We start our study of potential and real LZS with a simple example of how a
Feistel cipher with 4 branches could be altered or re-wired. For example, we can
imagine that we want to reinforce the construction of Fig. 4.3 by a permutation
of wires D applied to I1.

Fig. 4.4. T-310 variant which is like a classical unbalanced Feistel reinforced by D.

Then P could be also a permutation on 27 wires and outputs of D and P
will be disjoint (at least in this case).

In particular, if D is just an identity permutation NOT erasing/replacing
any bits, and we already specify only bits from I2−4 in P , we are back with an
ordinary Unbalanced Feistel in Fig. 4.3.

4.5 Permutation D and Chosen Long-Term Key Attacks

There is no evidence the a simple bijective permutation of wires D applied to
I1 would ever be used in a real-life cipher T-310. This is a degenerate special
case which we have invented in order to show [later on] that T-310 designers
have intentionally and deliberately excluded this case. However it is easy to see
that this type of anomalous T-310 encryption as on Fig. 4.4 can be implemented
with standard T-310 hardware and that using it would have some very interesting
consequences.

A Weak LZS Attack

Imagine that we had D such that D corresponds6 to bijection between the set
{4 · 1, . . . , 4 · 9} and the set {4 · 1, . . . , 4 · 9}. This would make encryption round

6 The actual way to define D is slightly different in [80, 76], it is defined as an appli-
cation D : {1, . . . , 9} → {4 ·1, . . . , 4 ·9} which is a perfectly equivalent definition and
we can use the same letter D. In this paper we will also use the notation D which
is the corresponding application D : IF9

2 → IF9
2 as on Fig. 4.4 which is induced by D

and which re-arranges the order of wires as specified by D. As already explained in
most parts of this paper we will have different sort of D for example D : IF9+1

2 → IF9
2.
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work exactly as on Fig. 4.4. Then we get an unexpected result. In such a
configuration the bit called v0 in [76] is not used. Consequently half of the
secret key, which are all the sm,1 will NEVER be used during the encryption.
Therefore we have discovered a particularly weak class of long-term keys where
the effective key size of a “daily” key would be reduced from 230 to7 115 bits.

Social Engineering Chosen-LZS Attack on T-310

It could be quite easy for an enemy to convince some employees of Eastern-
German state to use an alternative key based on some rumors of compromise of
the current key. If we allow such a key to be chosen be the enemy, we can reduce
the cipher key size to 115 bits (half of the key is never used).

More Chosen-LZS Attacks

In Section 20 we present another substantially stronger weak-LZS attack, which
is also in our opinion more realistic.

Divide And Conquer Attacks

More generally, the strict split of the key between s1 and s2 parts leads to many
other consequences. In Section 7.1 we will show how the description of the cipher
with our new notations D,P leads to a functional separation between two halves
of the secret key. Consequently, in Section 7.6 we will see that T-310 uses two
halves of the key in such substantially different way, so that the attacker can
hope to attack them separately.

7 This observation is in fact a non-obvious result, due to the fact that 5 key parity
equations concern s1 and only s1, and other 5 concern the other half of the key, cf.
page 255 [76] or page 117 in [80].
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5 Alterations to the Unbalanced Feistel Construction

In this section we look at those types of T-310 long-term setup which are relevant
to the variants of T-310 which (according to the current knowledge) are known to
be either recommended by the designers or actually used practice in encryption.

5.1 Mainstream T-310: Non-Bijective D

In the most common T-310 cipher versions known from the literature, D is
NOT a bijection (however the round function will still be bijective cf. Section
11). Keys with bijective D such as considered in Section 4.4 just above would
NOT be compliant with the two classes of long term keys KT1/KT2 described
in [80].

More precisely, both types of recommended T-310 keys D according to [80].
will always have following Section 2.2 page 115 that:

∃1≤i≤9 D(i) = 0

This requirement is mandatory for both standard types of T-310 keys known
as KT1 and KT2 which are described in pages 58 and 59 in [80]. Moreover for
KT1 keys we always have D(1) = 0 cf. page 256 in [76] and page 55 in [80], while
for KT2 keys we always have D(i) = 0 for some 1 ≤ i ≤ 7, cf. page 59 of [80].

5.2 Consequences of D(i) = 0

The fact that some D(i) = 0 has two important consequences. First, it excludes
the attack of Section 4.5. Secondly, it makes that one or more of the 4 · i values
is not attained by D. This corresponds to a more peculiar D : IF9+1

2 → IF9
2 as on

Fig. 5.5 which takes one additional input sometimes called v0, cf. [76] for which
D(i) = 0 is a place-holder. Then this one8 extra input will be9 substituted by
some key bit v0 ← sm,1 which is constant different in each round according to
one part of the secret key.

8 We can also have D with more than one additional inputs in the so called KT2 case
cf. Section 5.5 below.

9 As we will see below, or at least in all historical cases known to us which are complaint
with [80], which could excludes some very special cases, cf. Section 8.
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5.3 Unbalanced Feistel vs. KT1 Keys (Most Common Case)

In KT1 case, the function D induces a “quasi-permutation” on 9 bits which we
will later call D most of which has the function to rearrange the order of bits in
I1, which would be just a way to improve the diffusion of bits inside each branch.
However, quite importantly, it is not a permutation and in fact removes 1 bit
out of 9 and adds one fresh bit which is a constant dependent on the key.

Fig. 5.5. T-310 is NOT exactly a simple unbalanced Feistel scheme. In the common
KT1 case, the spec allows to use also bits from the leftmost branch I1 under a number
of highly technical conditions. It also disconnects ONE of the 9 bits in the left branch
and replaces it by a key-dependent constant sm,1 which is different in each round.

Here the second function is P : {1, . . . , 27} → {1, . . . , 36} will specify a subset
of 27 bits from all the 36 bits from I1−4 to be used as inputs of T . As already
explained P should be bijective. It appears that in KT1 case there will be always
8 values which are taken by both P and D.

5.4 The High-Level Structure of KT1 Keys

The long-term key D/P are not fully specified in [80, 76], instead a complex set
of constraints which D and P must satisfy is given. cf. Appendix B. Now, for
all KT1 keys of [80] we observe that just one10 bit from leftmost branch I1 gets
disconnected and it is replaced by a constant11 then it is possible to see that P
must include at least one input from the leftmost branch or 1 bit would be lost
and it would become impossible to build a bijection.

In addition, the criteria which the KT1 long term key D/P should satisfy
described in [80, 76] guarantee that all the 9 bits from the leftmost branch will
be outputs of P () of type 4 · l and therefore must and will be used as inputs to

10 In [76] it is also exactly one bit, and precisely the one with index equal to 4j8, which
number is part of one way to define a long-term key in [76].

11 This constant will be later seen to be one of the key bits and it will be different in
different rounds.
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T . Therefore in a typical version of T-310 as per [76], T will have as many as
9 additional inputs from the leftmost branch J1, which interestingly are those
9 bits which would be traditionally forbidden to use in traditional unbalanced
Feistel ciphers, cf. Fig. 3.2 above. This means that there will be serious diffi-
culties in making sure that our “tweaked” generalized Feistel is still going to
be a bijection12. Depending on the choice of D,P in T-310 decryption13 is a
lot less trivial process enabled by additional properties. An additional internal
“triangular” structure is now badly needed in order to enable these 9 bits of I1

which “theoretically” now depend on themselves, to be computed - one by one
- in a specific order, cf. Section C. A detailed example of how inversion can be
performed is provided in Appendix C.9.

Overall these more or less important modifications which depart from a tra-
ditional Feistel structure impose a lot of strong constraints which are bound to
have, very important consequences for the cryptanalyst and will heavily limit the
complexity of T . This also makes the current Luby-Rackoff theory e.g. [65–67]
not exactly relevant to the security of this cipher or requires a more adapted
theory to be yet developed, and the cipher will rather require a substantially
larger14 number of rounds than other similar ciphers [e.g. RC2] to be provably
secure or secure against “generic” attacks.

12 This question is studied in Appendix C.
13 Decryption in the sense of computing the previous states of the T-310 generalized

Feistel variant is not needed in normal operation of the cipher. However for this
cipher to be bijection, is needed as a structural property which was clearly imposed
by designers of T-310, cf. Appendix C, and this for some very good (security) reasons
such as preventing the entropy of the cipher state from being depleted by iteration.

14 The opposite could also be argued: Though the strong internal structure of T in
T-310 certainly leads to imperfect/poor diffusion, a well-chosen D - NOT required
by the theory such as [65] - could make it substantially stronger and avoid attacks
such as splitting the cipher in 2 loosely connected parts, cf. Fig. 3-4 in [38, 39].
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5.5 Alterations to the Unbalanced Feistel Construction with KT2
Keys

It seems rather obvious that replacing more than 1 bit by a constant would
weaken the cipher. It is also worth noting that for KT2 keys as described in [80]
more bits can be disconnected, but again, only one is replaced by a constant [at
least for key 15 from [44]]. This type of keys is not yet well understood.

Fig. 5.6. Connections of T-310 when using the KT2 key 15 from [44].

Comparison KT1 vs KT2. Keys of type KT1 and KT2 differ very substan-
tially. For example for KT1 keys the outputs of D and P will have 8 numbers
in common. In contrast for KT2 keys the two sets of outputs of D and P will
be always disjoint, cf. page 59 in [80].

An example of a real-life KT2 key is the key 15 from 1979 in [44] which we
have verified to satisfy all the conditions from pages 59-60,114-115 and 117 in
[80]. In this example only 3 bits of I1 are used in T , while 9 are typically used
for KT1 long-term keys (which are illustrated in Fig. 5.5). In KT1 we always
have D : IF9+1

2 → IF9
2, while in KT2 we may have D : IF9+3

2 → IF9
2 but also for

example we could have D : IF9+2
2 → IF9

2 cf. Appendix E.3.
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6 Detailed Description of T-310

Given Fig. 6.7 and Fig. 5.5, in order to fully specify the cipher T-310 we need:

1. To specify the u0 the initial 36-bit state I1−4 of the block cipher which is a
constant equal to 0xC5A13E396, cf. [76].

2. To specify D,P fully, cf. Section 8 and how they affect the exact connections
inside one round of the block cipher φ, cf. Sections 7.5, 9 and Section 11)
which is further extended in Appendix C.

3. To specify the internals of the round function T : {0, 1}3×{0, 1}27 → {0, 1}9
cf. Section 9 below.

4. To specify how the 3 bits of key and IV (fm, sm,1, sm,2) used by D and T
are generated, for each round m ≥ 1, cf. Section 13.2 and 13.4.

5. To specify the encryption component: how bits from the state of our iterated
block cipher are extracted, cf. Section 14.1 and used to encrypt the plaintext
5 bits a time, cf. Section 16.

On Fig. 6.7 below we show how all these things come together.

Fig. 6.7. T-310 Cipher.

7 Construction of One Encryption Round φ

We start by a high-level description where we introduce our new notations.
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7.1 Compact High-Level Description of One Round φ

We denote by um,j the state of the block cipher after m rounds of encryption
m = 0, 1, . . . and j = 1 . . . 36. Then each round is computed as:

(um,1−36) = φ (sm,1, sm,2, fm; um−1,1−36)

Here φ : {0, 1}3 × {0, 1}36 → {0, 1}36 is one full round of encryption with 3
bits of key+IV per round which is written here using our new compact notations
as in Fig. 4.3 and Fig. 5.5:(

ui,I1−4

)
= φ

(
sm+1,1, si,2, f ; um,I1 , um,I2 , um,I3 , um,I4

)
=(

um,I2 ; um,I3 ; um,I4 ; D(sm+1,1; um,I1)⊕T
(
f, sm+1,2, P(um,I1−4)

) )
Below we explain our new notations D, T and P not previously used for T-310.

7.2 Definition of P

Then P : {0, 1}36 → {0, 1}27 is a permutation of wires which also defines which
wires are not15 used (depending on cases). It is defined as:

Pk (um,1, um,2, um,3, . . . , um,36) = um,P (k) for any k = 1 . . . 27

Therefore we have:

(v1, v2, v3, . . . , v27) =
(
um,P (1), um,P (2), um,P (3), . . . , um,P (27)

)
7.3 Definition of T

The definition of T : IF29
2 → IF9

2 is the same as T with order of outputs inversed,

i.e. Ti(f, s2, v1−27)
def
= T10−i(f, s2, v1−27), which function T : IF29

2 → IF9
2 will be

defined in Section 9.

7.4 Definition of D in KT1 Case

We focus primarily on KT1 case represented in Fig. 5.5. In this case, D is near-
permutation of 9 wires with one additional bit of input si,1 which is the bit16

which “replaces” the bit which17 is “removed” in KT1 case.
In KT1 case (and not in KT2 case) we have a particularity that outputs of

D() are always expected to be multiples of 4, and are of the form D(a) = 4 · b
with b ∈ {0, . . . , 9}. Here we distinguish two types of inputs for D. First, the the
case b = 0, which corresponds to replacing one bit by a constant which is not
from I1 but equal to si,1. Then we have all the other multiples 4 · b with b 6= 0
which are exactly a subset of those 8 out of 9 bits of I1 which are used.

Overall, our permutation D induces a function D : {0, 1}1×{0, 1}9 → {0, 1}9
defined as follows, where we use a quite unusual numbering of inputs to keep it
partly compatible with [76] and Fig. 5.5.

Di (s1; u4, u8, u12, . . . , u36) = s1 when D(i) = 0

Di (s1; u4, v8, u12, . . . , u36) = uD(i) when D(i) 6= 0

15 Specific example of missing bits are listed in Table 1 page 26 which leads to some
important differential properties, cf. Section 12.2.

16 This bit was called v0 in [76].
17 It happens in fact at position equal to 4j8 following the notations used in [76].
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7.5 Summary: Main Part of φ

Putting it all together, we have 9 new bits created at each round which we will
call U1−9 as defined here below. We also recall that these 9 bits will be shifted
to branch I4 now, cf. Fig 5.5 and therefore we have:

(um+1,1, um+1,5, um+1,9, . . . , um+1,29, um+1,33)
def
=

(U1, U2, U3, . . . , U8, U9)
def
=

D(s1; um,I1)⊕T
(
f, s2, P(um,I1−4)

)
=(

um,D(1) ⊕ T9(f, s2, um,P (1−27)),

um,D(2) ⊕ T8(f, s2, um,P (1−27)), um,D(3) ⊕ T7(f, s2, um,P (1−27)), . . .

...

. . . , um,D(8) ⊕ T2(f, s2, um,P (1−27)), um,D(9) ⊕ T1(f, s2, um,P (1−27))
)

where by convention um,1
def
= s1

Moreover for most historical T-310 keys we have D(1) = 0 which gives:

(um+1,1, um+1,5, um+1,9, . . . , um+1,29, um+1,33) =

D(s1; um,I1)⊕T
(
f, s2, P(um,I1−4)

)
=(

s1 ⊕ T9(f, s2, um,P (1−27)),

um,D(2) ⊕ T8(f, s2, um,P (1−27)), . . .

. . . um,D(9) ⊕ T1(f, s2, um,P (1−27))
)

Notes on notation: We use the letter φ following [76] and we consider that
φ : IF3+36

2 → IF36
2 . Similar but different notations are used in [80]: except that

it uses a capital letter Φ which is written in handwriting and which looks like
neither φ nor Φ which could lead to some confusion. Then this letter Φ and
other similar notations are used at many places in a very mathematical style
which privileges compact notations over trying to avoid any ambiguity18. In this
paper we will also privilege compact notations and when some 3 bits are fixed
in some particular encryption context we will consider that we have a function
φ : IF36

2 → IF36
2 which will typically be a permutation and which following the

habit of [80] will still be denoted by φ.

7.6 A Potential Serious Vulnerability - Divide And Conquer
Attacks on Key Space

There is something interesting which is revealed by our new notations D and
P. We observe that ONLY half of the key bits (120 bits) will ever be used to

18 In [80] Φ will typically denote our permutation φ where the (s1, s2, f) bits are fixed,
OR when all possible 8 choices of (s1, s2, f) are considered. Given a fixed (P,D) we
have exactly 8 possible permutations which are sometimes denoted by Φ0, . . . , Φ7. At
other places the notation ΦT is used to distinguish the permutation Φ of the round
function of T-310 cipher from one defined for a different cipher, e.g. page 47 in [80].
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form any of the si,1 used by D, and another disjoint half of key bits is used to
form the si,2 used in P. This fact alone is potentially a serious design flaw
in T-310 cipher and suggests there might be some divide-and-conquer or guess-
then-determine attack, where initially the attacker would guesses only half of the
key bits etc and confirm this guess without knowing the other half. For example
we could just compile statistics on how frequently flipping a bit i flips also bit
of the form i+ 4k for any number of the rounds of this cipher, and realize that
this depends on D primarily and if we guess this half of the key we should get
a specific recognizable pattern.

We don’t know if such attack will be efficient, and the attacker currently
does NOT easily get access to see all the flipped bits, cf. Section 14.1-16, BUT it
would be extremely easy for the designers to avoid any such attack on T-310
by mandating a sequence derived from both halves of the key for both D and P.

8 Long Term Keys D, P

The long term key D/P are not fully specified in [80, 76], however some historical
examples of D/P can be found in [44]. It appears that the “main” historical
versions of T-310 were primarily using KT1 keys. KT1 keys are defined in [80].
There is strong evidence in that some 7 keys of type KT1 have been used in
practice in the period of 1979-1990, cf. Section 8 and [44]. Then there exists
another substantially less popular class of long-term keys KT2. The sources and
[80, 44] list only 1 such key which is number 15 from 1979 and we are not sure if
this was ever actually used to encrypt any substantial volume of communications.

8.1 Example of D, P of Popular Type KT1

No example of actual long term key D/P is given in [80, 76]. Instead a set of
peculiar constraints on D/P are specified. In [76] only the so called KT1 class
of keys of [80] is specified and it is not specified19 exactly. In Appendix B we
provide a complete specification of this class. In [80], another class of keys KT2
is specified. Both these classes of keys are clearly meant to make Fig. 5.5 have
the desired properties such as invertibility and possibly other which need yet20

to be elucidated.
Several real-life historical examples of keys D/P from 1977-1990 can be found

in [44] which are given numbers21 of type Der Langzeitschlüssel 14: (1979).

19 We demonstrate this fact in Section F.1.
20 At this moment we are far from being able to make the full assessment of the impact

of these criteria on the strength of T-310, and apparently there may exist other
alternative sets of rules, cf. [44].

21 It appears that only keys 14,15,21,26,30,31,32,33 in [44] are for T-310. Inside these
keys only some are long-term keys for T-310 and other are apparently keys for
different other East German encryption machines different than T-310 which are
also listed there. Circumstantial evidence seems to show that this numbering is
consistent with earlier documents, for example in page 42 of [80] we read that key
14 are of type KT1 and key 15 are of type KT2, which is also true for keys found in
[44].
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In our research by default we will use the following real-life long-term key number
26 from [44]. We have carefully checked that key 26 belongs to the so called KT1
class which is fully described in [80] also [not completely] described in [76].

//Der Langzeitschl\"{u}ssel 26: (1981)

D=0,28,4,32,24,8,12,20,16 P=8,4,33,

16,31,20,5,35,9,3,19,18,12,7,21,13,23,25,28,36,24,15,26,29,27,32,11,

alpha=4

We have also tested all the other keys in [44] and we have verified that keys
which belong to class KT1 are only and exactly those numbered 14,21,26,30,31,32,33.

8.2 Properties of KT1 Keys

KT1 keys mandate a sort of total ordering on the outputs of D: there exist 8
pairwise distinct exist integers j1, . . . , j8 ∈ {2, . . . , 9} such that D(j1) = 4 and
D(jk) = 4jk−1 for any k = 2 . . . 8, cf. Appendix B and [80, 76]. Other important
properties of KT1 keys are studied in Section 5.3, Section 5.4 and in Appendix
C.

8.3 KT2 Key Class

This type of keys is not yet well understood. The specification of class KT2 is
substantially more complex than KT1, it is split in several parts which can be
found on pages 59-60,114-115 and 117 in [80]. We have checked that the only
known authentic key of type KT2 which 22 is key 15 from 1979 in [44] does
indeed belong to KT2. This key is as follows:

D=0,4,17,12,35,32,2,24,20 P=15,13,33,

34,6,8,5,3,9,18,14,22,28,30,21,31,7,25,26,16,27,11,23,29,19,1,36

It seems rather obvious that replacing more than 1 bit by a constant would
weaken the cipher. It is also worth noting that for KT2 keys as described in [80]
more than one bit will be disconnected contrasting with KT1 keys, but in both
KT1/KT2 cases only one is replaced by a constant (this is at least for key 15
from [44]).

The keys of type KT2 are also studied in Section 5.5, Appendix D and Ap-
pendix E.

8.4 Other Keys and Key Classes

We have tested all the keys which are indicated as keys for T-310 in [44] and
some such keys do not belong to neither of two classes KT1/2. Some of these
keys such as 27/28 are clearly indicated as “anomalous keys for testing”, others
such for example as key 29, look like other similar KT1 keys, yet do not satisfy all
the KT1 conditions enumerated in page 256 of [76]. In Appendix F.1 we present
another key which is also “almost” but not quite KT1. Similarly in Appendix
E.2 we present several keys which are “almost” but not quite KT2.
22 We also study this key in Fig. 5.6 of Section 5.5 page 15.
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8.5 Key Sizes for the Long Term Keys

According to page 56 in [80], the entropy of (D,P ) belonging to class KT1 (also
studied in [76]) is between 78.1 and 79.7 bits. For class KT2 it would be between
76.1 and 89.2 bits. It appears that the designers have not attempted or had no
capacity to evaluate the sizes of these sets more precisely in 1980s, for example
due to a limited computing power. We need to add to this a third not yet studied
part of long-term key which is called α and is simply a number between 1 and
36, cf. Section 14.1 below. However, the number of possibilities for α is reduced
to about 30 cf. page 117 in [80]. Therefore the entropy of α is only about 4.9
bits.

Overall, the union of both classes of KT1/KT2 keys with a specification of α
will have approximately between 283 and most 294 elements. Thus the effective
key size for the long-term key for T-310 is between 83 and 94 bits.

Remark: This is NOT very large compared to other historical ciphers.
For example the effective long-term key size for Enigma is hundreds of bits (88
bits per unknown rotor), and for GOST cipher it is about 354 bits, cf. [33]. This
small key size suggests that a cryptanalyst could maybe be able to break T-310
also when the long-term setting are unknown.

8.6 Long Term Keys vs. Security

It is clear that the choice of D,P is crucial for the security of this cipher, in
the same way as the choice of the bit permutation which occurs after the round
function is crucial for the security of DES, cf. slide [10] and in the same way as
a bad choice is what makes GOST weak, cf. [34], and leads to some very good
attacks, cf. again Fig. 3-4 in [39] and all the attacks of [38–40].



22 N. T. Courtois et. al., extended version, March 25, 2017

9 Description of T

The standard method to define the round function of T-310 is to define T :
IF2+27

2 → IF9
2 as follows:

T1 (f ; s2; v1−27) = f

T2 (f ; s2; v1−27) = T1 ⊕ Z(s2, v1−5)

T3 (f ; s2; v1−27) = T2 ⊕ v6
T4 (f ; s2; v1−27) = T3 ⊕ Z(v7−11)

T5 (f ; s2; v1−27) = T4 ⊕ v13
T6 (f ; s2; v1−27) = T5 ⊕ Z(v14−19)⊕ s2

T7 (f ; s2; v1−27) = T6 ⊕ v20
T8 (f ; s2; v1−27) = T7 ⊕ Z(v21−26)

T9 (f ; s2; v1−27) = T8 ⊕ v27

Here Z : IF6
2 → IF2 is a Boolean function defined in Section 10.1. We also recall

the input naming of [76]: e0 = f , then e1 = s2, and then e2 = v1 up to e28 = v27.

Fig. 9.8. A zoom inside the “complication unit” drawing cf. [46], which can be mapped
to the description of T () and ei notations of [76].

One can also view φ and T as a stateful system which operates on 9 bits:

Fig. 9.9. T-310 round function seen as a stateful component IF3+9
2 → IF9

2 with 36
memory bits, cf. page 119 in [80] which also mandates a certain subset W of 6 special
bits e.g. u5 and u33 cf. page 117 in [80] and Fig. 2.11 in Appendix B.
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9.1 Observations on T ()

In general, in Luby-Rackoff theory, for a block cipher to be secure it is required
for T to be very complex. What strikes us in T-310, is that the the round
function T is extremely simple and highly structured, which again is clearly a
sort of inevitable consequence of the fact that the bits of I1 would need to be
computed in a specific order.

It is also something that reveals a highly regular internal structure with weak
to inexistent diffusion properties [the diffusion is the job of D and P] and an
inherently sequential character of T-310 computations. In the very definition
of T () above, there is exactly one natural order of computing the output bits
T1, . . . , T9. Accordingly, T-310 can also be viewed as a complex stream cipher
with non-linear feedback which generates one new bit a time in this order and
where the amount of non-linearity or Multiplicative Complexity [19] which is
less than just one application of Z per new ui,j state bit generated.

9.2 Observations on T () Combined with Final XORs

We can now combine together this “straight-line order” structure inside T with
the next step which is done after T ()is computed: the XOR with bits of the left
branch I1 which leads to the creation 23 of 9 new bits denoted by Ui in Section
7.5. It is easy to see that these 9 bits are computed in the exact order U9, . . . , U1

and that the following equations hold:

U1 ⊕ s1 = U2 ⊕ uD(2) ⊕uP (27)

U2 ⊕ uD(2) = U3 ⊕ uD(3) ⊕Z4(uP (21−26))

U3 ⊕ uD(3) = U4 ⊕ uD(4) ⊕uP (20)

U4 ⊕ uD(4) = U5 ⊕ uD(5) ⊕Z3(uP (14−19))⊕ s2
U5 ⊕ uD(5) = U6 ⊕ uD(6) ⊕uP (13)

U6 ⊕ uD(6) = U7 ⊕ uD(7) ⊕Z2(uP (7−12))

U7 ⊕ uD(7) = U8 ⊕ uD(8) ⊕uP (6)

U8 ⊕ uD(8) = U9 ⊕ uD(9) ⊕Z1(s2, uP (1−5))

U9 ⊕ uD(9) = f

Here we distinguish Z1, Z2, Z3, Z4, which by definition are 4 copies of the
same Boolean function Z() defined in Section 10.1, and which are computed in
this exact order Z1−4.

9.3 Vulnerabilities of the Whole T Component

In Section 12.1 below we show that there is a serious problem in all versions of
T-310: the round function will systematically omit to use some 9 bits regardless
of the long-term key. This has serious consequences for the security of T-310 in
particular against differential attacks, cf. Section 12 below.

23 These bits will become (u33, u29, . . . , u5, u1) = (U1, U2, . . . , U9) at the input of the
next round φ.
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10 The Non-Linear Component of T-310

The only24 non-linear component in T-310 block cipher and keystream genera-
tion process is a simple Boolean Function Z with 6 inputs.

10.1 Description of the Boolean Function Z

Following page 113 in [80] we have:
Z(e1, e2, e3, e4, e5, e6) =

1⊕ e1 ⊕ e5 ⊕ e6 ⊕
e1e4 ⊕ e2e3 ⊕ e2e5 ⊕ e4e5 ⊕ e5e6 ⊕

e1e3e4 ⊕ e1e3e6 ⊕ e1e4e5 ⊕ e2e3e6 ⊕ e2e4e6 ⊕ e3e5e6 ⊕
e1e2e3e4 ⊕ e1e2e3e5 ⊕ e1e2e5e6 ⊕ e2e3e4e6 ⊕

e1e2e3e4e5 ⊕ e1e3e4e5e6
which is the same as on page 256 in [76] except that the constant 1 is missing

in [76]. In contrast, online sources [46] seem to provide incorrect25, information.
Another Vulnerability. The fact that the same Boolean function is used

everywhere is of course a potential vulnerability. For example, using the same
Boolean function many times in an LFSR-based stream cipher combined with
self-similarity properties which allow the whole inputs of these functions to re-
peat at a later time during the encryption process is known to lead to some
extremely fast key recovery attacks on certain ciphers. An example of such at-
tack can be found in [41] which attack was further improved in [51].

24 Final “double” one-time pad character encryption module of T-310 is also non-
linear, cf. Section 16, which fact however will be out of scope for most of the security
analysis, as the main or final step in many attack will work starting from a pure
block cipher property.

25 The ANF published in [46] appears to be incorrect and more precisely two cubic
terms e1e3e4 and e1e3e6 are missing in [46]. In fact all the three representations of
Z() provided in [46]: ANF, truth table and DNF, are pairwise inconsistent, so it is
difficult to consider [46] to be a reliable source.
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11 Properties of T-310 Round Function φ

The original documents on T-310 contain a great deal of claims about various
mathematical and cryptographic properties of φ and various combinations of
permutations derived from or based on φ. Here crucial properties to be studied
will be vulnerability to Differential Cryptanalysis (DC) cf. Section 12 below,
truncated differentials, linear cryptanalysis and bi-linear and multinear flavors
which will be particularly interesting here cf. [12, 10] and many other, ElimLin
and advanced variants thereof [9, 18, 79], etc. We plan to study all these in future
revisions of this paper as all of these deserve a serious consideration for a serious
government encryption systems such as T-310. For example on page 56 of [80]
it is very clearly specified that φ should be a bijection, which question is related
to some strong DC attacks as we will see below.

11.1 Is One Encryption Round φ a Permutation?

From a purely functional engineering perspective nothing forces the round func-
tion to be invertible, and this property is simply not required for the normal
operation of the cipher. However it is possible to see that the security conse-
quences of φ being not a permutation would be severe, and comparable to some
spectacular so called “Vanishing Differential Attacks” which have been for ex-
ample used a lot by hackers in the last 20 years to extract secret keys and clone
mobile phone SIM cards, see Appendix C.1. It is also clear that the designers of
T-310 and other East German ciphers in 1970s have done a great deal of effort
to make sure that T-310 keys are always bijective therefore making this type of
powerful differential attacks impossible. We refer to Section 20 to see that this
sort of attack would also be truly devastating for T-310. In order to show that
T-310 was designed to resist this attack, in Appendix C we provide complete and
detailed mathematical proofs to show that all KT1/KT2 keys lead to a bijective
round φ, which also therefore proves the security of all known historical versions
of T-310 against “Vanishing Differential” attacks.

11.2 Another Result on φ

The following result is claimed to hold (apparently) for all long-term keys for
T-310, cf. page 49 in [80].

Theorem 11.2.1 (Local injectivity result for φ4). For four rounds φ4 if we
fix the block input u on 36 bits, and vary the 12 of the key and IV bits, we
obtain 212 pairwise distinct φ(u) values on 36 bits.

This result also holds for 1,2 and 3 rounds of T-310, cf. page 49 in [80].
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12 Differential Attacks and Differential Vulnerabilities in
T-310

Differential cryptanalysis is one of the oldest one of the most powerful and gen-
erally applicable attacks on block ciphers, cf. [11, 40, 8, 38]. We refer to [40] for a
survey and pointers on the “confidential” history of development of differential
cryptanalysis. In [76] we read that it is not clear if the designer knew about lin-
ear and differential cryptanalysis (LC/DC). In modern cryptanalysis it is very
clear that Feistel schemes are naturally susceptible to Differential Cryptanaly-
sis (DC) and there exist many differential attacks which are structural attacks
primarily on the way in which the components are connected ignoring totally
the exact content of the components cf. [67], or ignoring it in approximation,
cf. [38–40]. However for other ciphers, the properties of the S-boxes will be very
important for DC attacks. There exist also many advanced forms of differential
cryptanalysis [29, 54, 59, 13] where it can be combined with other attacks such as
software algebraic attacks [34, 32, 47]. In this Section we give some first results
on DC attacks on T-310. First we are going to show there are good reasons to
claim that all version of T-310 are inevitably quite vulnerable to such attacks.

12.1 Missing Bits - A Potential Vulnerability of T for any P

We observe that in the situation of T-310 in Fig. 5.5 there is no reason whatsoever
why the number of inputs of T would be limited to 27. Interestingly, even though
9 extra inputs to T have been added, the total number of inputs was kept at
27, i.e. some of the 27 inputs from I2−4 will not be used. This is clearly not a
good idea. Certain bits or differences on these bits have no effect on the output
of T and therefore less bits in subsequent rounds will be affected.

Here are the exact bits which are not used for different historical keys:

Table 1. List of 9 bits which are NOT used by the round function T for different
long-term keys

key nb bits which are not P (j)

16 4,8,12,16,20,24,28,31,36

14 2,3,7,10,11,17,22,30,31

21 10,14,15,17,22,23,27,30,35

26 1,2,6,10,14,17,22,30,34

30 10,13,14,15,17,22,26,31,34

31 2,3,11,14,17,19,27,31,34

32 2,3,6,7,17,19,26,31,35

33 7,11,14,15,19,23,27,31,34

15 2,4,10,12,17,20,24,32,35

Conjecture 12.1.1 (Missing Bits in T-310). We conjecture that 9 bits are
systematically missing, which is clear for KT1 keys due to criteria listed in [76],
and which is less evident for KT2 keys such as key 15.
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Remark: This property of 9 missing bits seems to be an artefact of the his-
torical process which has lead to the development of T-310 such as backwards
compatibility or/and the temptation to design a cryptosystem which is sim-
ple/elegant/ or about which some interesting properties can be shown to hold,
cf. for example Section 1.5 in [80].

12.2 Missing Bits - Applications

This property of Table 1 and Conjecture 12.1.1 is very likely to weaken the cipher
against various differential attacks such as [38, 39] and in general. If the reader
doubts whether the fact of not using all available bits in each round T degrades
the security against differential cryptanalysis, consider the following example.

Fact 12.2.1 (A 3R Property for key 30). For example it is easy to see that
for key 30, if we flip bit 13, only one bit 16 is flipped after 3 rounds.

This is an extremely rare example of a differential where the number of active
bits does not grow.

Remark: Our missing bits property can also have positive consequences, for
example it can be used to prove the certain correlation attacks will not work,
see for example Thm. 24.0.1 page 53.

12.3 Examples of Differential Attacks on T-310

Our student Matteo Scarlata (with help of another student Mario D’Onghia who
also developed another fast parallel tool) has developed a software tool written
in Python cf. Section L and [75] for discovery of differential attacks on T-310.
Here are some preliminary results for key 26.

Table 2. Some “good” differential properties for T-310 with LZS-26

key nb rounds input → output proba

26 4 [22] → [18] 2−1.95

26 7 [1] → [1,12] 2−3.19

26 8 [6] → [18] 2−5.85

26 10 [30] → [36] 2−6.8

26 13 [25] → [18] 2−9.9

26 17 [26] → [11,23] 2−16

12.4 Differential Vulnerabilities with Different IVs

More possibilities for stronger attacks exist if we allow two different IVs. We
have for example discovered that:

Fact 12.4.1 (A chosen-IV differential property for T-310 block cipher).
Consider 2 parallel encryptions with the T-310 block cipher and our example of
a long-term key specified in Section 8. Consider two encryptions with the same
key, same input and two different IV, one IV is composed of all 0s (∀ifi = 0)
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and the other IV is all 1s. Then the probability that the outputs difference has
HW equal to 35 out of 36 bits (strong result, the output differential is almost
fixed) for 4 rounds is as low as 2−8.1 instead of around 36 · 2−36 expected for an
ideal block cipher.

Related Research: The designers have clearly mandated that to flip 0 bits
(have a collision) for 4 rounds and for 2 different IVs cannot happen, cf. Thm.
11.2.1. Now it seems also that 36 bit difference does not happen either.

13 Key and IV Scheduling Parts in T-310

13.1 Basic Facts About T-310 Keys

According to [45] the long-term keys LZS of T-310 take a form of plug-in cards
and are changed only “when necessary”, for example once per year. Daily keys
“ZS” are implemented as punched cards and are changed weekly prior to 1982,
then daily.

13.2 Key Scheduling and sm,1−2

The key scheduling in T-310 is simply a periodic repetition every 120 rounds
and following [76] we have:

sm+120,1−2 = sm,1−2

The initial key is s1−120,1−2 which is 240 bits, however 10 out of 240 bits are
parity bits so the effective key size is 230 bits [76].

13.3 IV Generation and Transmission in T-310

According to [76] the IV is chosen at random in T-310 operation. It is then
transmitted in cleartext in a form of a certain special sequence of characters
called SYF (synchronization sequence) which has 25 characters, it is prefixed
to the cipher message, and it is automatically recognized at the other end as a
beginning of a transmission, cf. pages 15-17 in [80].

13.4 IV Expansion and fm

The fm sequence is obtained with an LFSR and it starts at f−60, . . . , f0 which
is the 61-bit IV which according to [76] is chosen at random. These bits are not
used in encryption and the first bit used is f1. The LFSR is defined by:

fi = fi−61 ⊕ fi−60 ⊕ fi−59 ⊕ fi−56
Which corresponds to the polynomial x61 = x5 + x2 + x1 + 1, cf. [46]. The

period of this LFSR is 261 − 1 which is a prime.
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14 T-310 Keystream Generation Process

T-310 is a cipher in which hundreds of rounds of a relatively complex block
cipher are used to produce just a handful of bits of keystream. This keystream is
produced and used in several stages: first some [extremely few] bits of the state
ui,j are extracted and become bits of intermediate state ai, which are further
decimated a proportio of 10/13 of these bits will be used in actual encryption
which we study later in Section 16.

14.1 Bit Selection For Encryption

T-310 has another part of long-term key called α which is simply a constant
integer called α ∈ {1, . . . , 36} here and in [76] (and called d in [44]) which
governs the extraction of one bit every 127 rounds:

ai
def
= u127·i,α, i = 1, 2, 3, . . .

The for each 127 · 13 consecutive rounds we discard 3 bits out of 13 and we
use 10 for encryption in a way specified in the next Section 16.

It is important to note that NOT every value α is permitted, some 6 values
are excluded, α /∈ W where W = {5, 9, 21, 25, 29, 33}, cf. Section B and D and
page 117 in [80].

Remark. A basic observation is that a relatively large proportion of 10/13
of these bits will be actually used and conversely these bits are those which the
attacker may have hopes to have some access to.

14.2 Discussion - Low-Rate Extraction

This selection of extremely few bits is rather (at least at first sight) where T-310
appears to be a particularly strong26 cipher design. It seems that it is actually
potentially stronger27 than other ciphers we have compared it to, such as RC2,
DES, or Skipjack, this is also what was intended by the designers in 1973 and
what the BSI report from 1990 said, cf. Section 1.1.

The main point is that only one bit of the state of the cipher per 127 rounds
of the block cipher is extracted for the actual encryption and could eventually be
available to the attacker. This is an incredibly low quantity and cryptanalytic
literature knows extremely few examples where the cipher would actually be
broken under such difficult circumstances.

One major example is the so called “Dark Side Attack” on MiFare classic
[29, 54], one of the most widely used security device on our planet, with ap-
proximately 2 billion RFID smart cards sold. In this attack the attacker obtains
only 4 bits from each encryption [29, 54]. Here we can obtain only 1 bit for each
127 rounds of encryption, and though there is no limit on how many round
we could have, the more rounds, the harder it becomes to develop any sort of
cryptographic attack.

26 Of course it could also easily be made yet a lot stronger, for example if a one-
way function was used to format the outputs, or if we used a large size stateful
filter/combiner such as on Fig. 2. in [24].

27 Stronger, unless these ciphers would also be used in some specific “very careful”
mode, with very few bits used for actual encryption, such as in T-310, cf. also [60].
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15 Estimating Strength of T-310 Against Direct Software
Algebraic Attacks

A natural question is how robust is T-310 against software algebraic attacks,
techniques which as already explained do in a certain sense break any cipher,
if not too complex, cf. [9, 30, 31, 18, 16, 34, 70]. Here the security of T-310 can
be compared to KeeLoq, also a block cipher which locally looks like a stream
cipher, and which has hundreds of rounds. General-purpose software key recovery
attacks on KeeLoq with a SAT solver can recover the key for about 160 rounds
only, cf. [25–27] for attacks running within hours/days on a PC, and having
access to 32 bit of information per encryption. This would maybe scale up to
200 rounds for 1 CPU year. The complexity of KeeLoq is lower than T-310: in
KeeLoq we have 1 Boolean function with 5 inputs per round, in T-310 we have 4
evaluations of a Boolean function with 6 inputs per round. In this respect T-310
remains more robust than KeeLoq28 and is maybe comparable to Simon [18, 32,
16] which is a cipher of remarkable simplicity and extremely low multiplicative
complexity [19]. Moreover here we dispose only of 1 bit of information per 127
rounds. Overall we do not expect that a SAT solver can break more than say
127 rounds of T-310 block cipher.
How Many Rounds do We Need to Attack? Initially it seems that the
attacker has little choice other than work on the first character of the ciphertext
C0 and try to develop an attack on 11 · 127 = 1397 rounds. In this paper we are
going to show that there exists non-trivial methods which allow the attacker to
generate Plaintext/Ciphertext (P/C) pairs for less rounds, in some scenarios as
little as 120 rounds only29.

15.1 Computer Simulations

Our student Om Bhallamudi has developed an open source software solution for
implementing software algebraic attacks on T-310. This software is described in
Appendix K.

28 KeeLoq is really a bad example, a particularly weak cipher which can broken with
time complexity as low as 228 [25] and even 223 for 15 % of keys, cf. [26].

29 In some cases yet fewer rounds, cf. attacks with faulty LZS in Section 20 where
however the attacks such as described in this section would not be appropriate. An
example of an attack scenario with extremely few rounds and also with faulty LZS
where the software algebraic attack technique of this section would be applicable
can be found in Appendix C.4.
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16 Encryption in T-310 - Double One-Time Pad

As already explained, from the iterated block cipher we extract just 1 bit per
127 rounds: u127,α, u254,α, u3·127, . . . , u1651,α and for every 13 bits we discard 3
and use 5+5 bits. More precisely we put:

Cj = (Pj ⊕Bj) ·Mrj

where Pj/Cj is the plaintest/ciphertext character on 5 bits, respectively,
then Bj = (a7+13(j−1), . . . , a11+13(j−1)) are 5 consecutive bits out of 13 previ-
ously discussed and rj is a “stepping” output which is derived from the FIRST
consecutive 5 bits out of 13 as follows:

rj =

0 if Rj = (0, 0, 0, 0, 0)
0 if Rj = (1, 1, 1, 1, 1)
32− r if Rj ·Mr = (1, 1, 1, 1, 1)

where Rj
def
= (a1+13(j−1), . . . , a5+13(j−1)) and

M =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

 which is such that M31 = Id.
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17 Basic Observations and Basic Attacks on T-310
Encryption Process

17.1 Side Channel Attacks on T-310

In the formula rj = Rj ·Mr we see that T-310 implements essentially an LFSR
with variable number of steps. This will be a serious vulnerability IF imple-
mented incorrectly. If the timing of this operation is NOT constant, this will
leak to the attacker one bit of information on the state after ONLY30 127
rounds of encryption, and probably even less, because of the poor diffusion,
most bits are created earlier than after 127 rounds. Then we can recover the key
by some form31 of a simple automated software algebraic attack [9, 30, 18, 16,
70]. However of course in historical teletype systems the timing was probably
constant, so this remains a theoretical32 attack.

Remark 1. There exists nowadays formal software methods for automati-
cally synthesizing small size implementations for arbitrary small-size problems
such as here, see [19, 82]. Such methods are used on both sides, for defensive
[constant-time] optimizations, which would be needed here, and for improv-
ing/enhancing cryptanalytic attacks such as proposed above and elsewhere in
this paper. Therefore evaluation the actual complexity of such an attack takes
some serious work on the S-box representation side, see for example [9, 20, 19,
34]. Exact complexity of such attacks will be studied in future updates of this
paper. Our first software solver was developed by our students cf. Section 15.1
and until now it provides all the basic functionality of a software algebraic attack
except (not as of yet) these advanced optimizations in the line of [19, 71, 82].

Remark 2. Using extremely few bits of a state of an iterated block cipher
in a protocol is a good practice in security engineering. It can also be used as a
strong defence against other side-channel attacks such as DPA, and it is used a
lot in the industry and subject to patents, see in particular [60].

30 An attack on more than 127 rounds would be difficult, cf. Section 15
31 We expect that a SAT solver attack will be suitable, and also an ElimLin-style attack

[18, 79, 16] or/and also a correlation attack, cf. Section 15.
32 It could be different if T-310 was re-implemented and used over more modern packet-

switched networks.
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17.2 The Zero Value Attacks on T-310

The Zero-Value attack is a well-known folklore33 attack in side channel crypt-
analysis [42, 55]. The key vulnerability is nicely summarized in the PhD thesis by
Matthieu Rivain [74] where we read that “multiplicative masking has a serious
drawback: it does not mask the zero value”. We have exactly the same problem
here with ·Mr masking in T-310! We recall the encryption formula from Section
16:

Cj = (Pj ⊕Bj) ·Mrj

Theorem 17.2.1 (Zero-Value Vulnerability in T-310 block cipher). If
Cj = 05 on 5 bits, then Pj = Bj regardless what the Rj/rj values are.
The converse also holds: if Pj = Bj on 5 bits, then we must have Cj = 0.

Note. This property shows that “double” one-time pad of T-310 has a security
flaw, and shows it could become equivalent of a “single” one-time pad, if we
restrict our attention to a subset of encrypted characters.

Bad News. Unhappily, the designers of T-310 have done well to make this
sort of attack relatively unattractive: following Section 16 the first bit of Bj
comes from a7 which comes from round 7 · 127 = 889. However it is possible to
see that if you invert the roles of rj and Bj , the attacker would get access to bits
at round 127. Breaking T-310 with bit output after 889 rounds seems ambitious.

Cube Attack? However, possibly, 889 relatively simple rounds would not
be out of reach for cube attacks [83, 43]. Cube attacks are also perfectly suit-
able when the attack can access only one bit of a state inside the block cipher.
Unhappily, here the attacker does not have access to encryptions with different
plaintexts u0 that he could control. Only the IV can be variable. So we could
consider a cube attack where the IV bits are considered as plaintext, and u0 is
fixed. However even in this case, the attacker still cannot apply the attack: it
is difficult to imagine that the attacker will dispose of encryptions with several
expanded IVs 889 bits long each, such that they would form a cube.

ElimLin+ Attack. An attack which will be more suitable for T-310 will be
an ElimLin+ attack, which is an ElimLin attack where the attacker generates
additional equations which can be generated by interpolation for example when
the plaintext+IV are fixed to some value [79]. Here the attacker will fix the
plaintext to u0 and generate equations for several IVs observed in the wild.
What is expected that for every Nr there will exist a number K such that
there exist linear equations which relate bits after Nr rounds from K different
IV encryptions and for EVERY key. This will also work if we are allowed to
use ONLY one bit per encryption, for example when Nr = 127 we would use
a7 = u889,α only for many different IVs. This in the light of Zero-Value attack
above we get an attack on T-310 for which it is easy to mathematically prove it
will work using the ANF of a7 seen as a Boolean function of the IV bits and key
bits, cf. [78]. The “only” problem again, is that 889 is a large number.

33 It is typically attributed to Golic and Tymen [55, 74, 68] however the attack was
known to ourselves and other researchers before, and while Golic and Tymen have
developed one specific solution to this problem [55], other very different solutions
exist cf. [42, 68].
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18 Preliminary Analysis for Correlation Attacks and
Space Shrinking Properties

In this section we establish a number of basic facts useful for our later correlation
attacks on T-310.

18.1 Useful Natural Language Statistics

In this paper we need some basic facts about the bias on individual bits for
German language plaintexts encoded with Baudot code or ITA-2 which is used
by T-310. For example we look at bit known as bit I in Baudot code, and ask the
question what is the probability that this bit is equal to 0 for a long plaintext. In
the table below we report these basic stats based on simulations on 750 Mbytes
of German language corpus downloaded from the online archives of the Zeit
magazine from 1980-2000, cf. www.zeit.de.

Table 3. Statistics for the bias on different bits which occur for German language with
5-bit Baudot code (upper table) and 8-bit Ascii coding (lower table).

P (bit I = 0) P (bit II = 0) P (bit III = 0) P (bit IV = 0) P (bit V = 0)

1/2 + 2−2.89 1/2− 2−4.11 1/2− 2−3.23 1/2 + 2−4.44 1/2 + 2−3.74

P (b0 = 0) P (b1 = 0) P (b2 = 0) P (b3 = 0) P (b4 = 0) P (b5 = 0) P (b6 = 0) P (b7 = 0)

1/2− 2−4.46 1/2 + 2−3.59 1/2− 2−3.50 1/2 + 2−2.83 1/2 + 2−2.33 1/2− 2−1.19 1/2− 2−1.07 1/2 + 2−1.06

These statistics are done for letters and numbers, with spaces and special
characters removed. In addition in the Baudot case only, we have converted all
letter to lowercase, and we have converted the “umluat” accented characters to
plain equivalents, e.g. German ü becomes u. These statistics could be different
in a real-life attack setting due to special rules used by T-310 operators.

In the ASCII case we keep the capital letters, and we have ignored special
characters such as 0xC3 and only looked at statistics for the actual characters,
for example ü can be encoded as 0xC3 0xBC and in this case we kept only
the last character. An interesting remark is that for most bits and for German
language, ASCII coding produces larger biases. However in this paper we need
to use the Baudot ITA-2 code which is the one originally used with T-310.
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18.2 Correlation Attack vs. Weak Keys in T-310

The question of whether an LZS will make φ bijective in T-310 is one of the
central questions in this paper cf. Section 11.1 and Appendix C.6. These ques-
tions are closely related to the question of correlation attacks on T-310. There
exists potentially many different correlation attacks in symmetric cryptanalysis.
In this paper we study two sorts of such attacks. In this Section we study one
type of 1-bit biases at the possibility of one single bit of the current state Ualpha
being biased, aiming at a certain type of ciphertext-only attacks which are later
studied in Section 20. In Section 21 and in Appendix G we will study some
very different sorts of 2-bit correlations between two bits Ualpha inside the T-310
block cipher.

18.3 A Specific Reason Why Correlations Exist

In this paper we are going to show that 1-bit biases are bound to happen for one
specific reason: when the space shrinks when φ is not bijective. Moreover, the
bias which we are going to obtain can be predicted, and depends essentially on
the entropy of the output distribution for φ imposed by the long-term key LZS.
In the following pages we will show that for example, if we consider some keys
such as defined in Appendix E.2, the bias will be weaker, and we generate keys
which obey to a substantially smaller subset of the conditions, cf. later Section
18.8, the bias will be yet stronger, and moreover it appears that the bias will
be at least as good as expected from the shrinking properties, sometimes better,
and we will see that bias will happen for any α for all the weak keys we consider.

18.4 A Method For Fast Estimation of Output Space

In this paper we will use a fast and inexact method for estimation of the output
space size which is based on birthday paradox [84] and which is closely related
to the notions of entropy and collision entropy. It is a well known result that
collision entropy is at most equal to the Shannon’s entropy and it cannot be too
small, cf. Table 1 page 3 in [77] for a precise result. The key question is how to
measure the entropy of the output distribution of φ in approximation without
doing 236 encryptions. This is needed in order to be able to quickly evaluate the
comparative strength of different long-term keys LZS against correlation attacks
which will study later.

We are facing the problem of efficiently approximating the entropy from
observation using an oracle access, which problem is studied in detail in [1]. In
this paper we need a fast method for approximating the result which will allow
us to check many different long-term keys in a short time. In order to simplify
the problem, we can for example assume that we sample the output space more
or less uniformly with some M frequent values obtained by φ, and that all the
other values occur less frequently and we neglect their existence. This question of
estimating the collision probability from Ω(

√
M) samples is mentioned on page

1 in [1] and the basic idea is that estimating Shannon’s entropy is possible from
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the the collision probability each time the Min-Entropy is large, i.e. we do not
have any 34 events occurring with probability substantially higher than 1/M .

In this paper we apply the birthday paradox to estimate the size of M
from observation of the collision probability exactly. More precisely, we make
an important simplifying assumption that if the entropy is equal to log2(M),
we assume that our output distribution behaves as a uniform distribution for
M events, and that other events other than the M most frequent events, do
not happen very frequently. Then we can draw the outputs at random in a way
similar as in Thm. 21 in [1], until a collision occurs. We stop at 1 collision, and
we measure the average expected time n for a first collision to occur. Then,
under our simplifications assuming that M events are nearly equi-probable, and
following [84] the average expected time n for a first collision to occur for a
population of M is governed by the following approximation where we neglect
negligible quantities in 1/M or smaller, and which is due to Ramanujan:

n ≈ 1 +

√
πM

2
− 1

3
Accordingly we can obtain n by running a few hundred simulations stop at

the first collision and restart, and we can then estimate the size of output space
M quite precisely as follows:

M ≈ 2(3n− 2)2

9π
This method will be used below for different LZS.

34 This is what we expect here or we would have a different sort of attack on T-310
with guessing the full state on 36 bits
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18.5 Space Shrinking - Original Keys vs. Special Keys

The main idea in our later correlation attacks is that correlations are going
to occur because the output space shrinks for many (weaker) long-term keys.
In the pages which will follow, we study how much exactly the image of type
φk({1, . . . , 36}) shrinks for certain weak long-term keys (weak LZS). We start
by looking at some original long-term keys found in [44]. We compare it to a
special key we 208 have generated in Appendix E.2 as a counter-example in our
proof that KT2 are bijective, it satisfies all the conditions of KT2 of Appendix
D.1 except the “Matrix” which has rank = 8 instead of 9, cf. Appendix D.4.

Table 4. Space shrinking properties: comparison of a regular KT2 key 15 with bijective
φ, some anomalous keys from [44] and our “Rank Deficient” key 208.

key nb D P |φ0({0,1}36)| |φ40({0,1}36)| |φ160 ({0,1}36)| |φ240 ({0,1}36)|

15 0,4,17,12,35,32,2,24,20 15,13,33,34,6,8,5,3,9,18,
14,22,28,30,21,31,7,25,26,
16,27,11,23,29,19,1,36

236.0 236.0 236.0 236.0

29 0,36,28,20,24,16,4,12,8 28,8,33,23,11,12,5,10,9,30,
19,18,4,31,21,24,13,25,22,
32,20,36,27,29,7,16,15

236.0 236.0 236.0 236.0

16 0,35,19,23,27,11,3,15,31 14,19,33,18,23,15,5,6,9,2,
34,1,30,11,21,3,22,25,17,
7,32,10,27,29,26,35,13

227.4 227.0 227.0 227.0

17 0,4,8,12,16,20,24,28,32 22,23,33,11,26,12,5,4,9,3,
2,1,19,10,21,8,7,25,6,35,
32,31,30,29,17,17,34

235.1 232.6 231.2 230.3

27 8,3,5,2,4,6,7,9,1 10,21,18,4,5,8,16,12,6,24,
2,7,3,25,17,26,9,14,22,1,
20,11,19,15,13,23,27

230.3 219.9 216.1 215.2

208 17,0,2,32,35,4,12,20,24 13,15,33,10,18,8,5,30,9,6,
3,14,16,22,21,31,7,25,26,
28,27,11,23,29,19,1,36

234.8 233.6 232.1 231.6

On Notation φ0. The meaning of φ0 is this table is that all the 3 key/IV bits
in each round are fixed to 0 in each round. More precisely we recall from Section
C.5 that each φ depends on has 3 key/IV bits s1, s2, f which makes that T-310
operates with non-commutative combinations of exactly 8 fixed permutations on
36 bits which are called φ0, . . . , φ7 in Section 1.5 in [80]. For example we can
have φ3 ◦ φ2 ◦ φ7 ◦ φ4 with four rounds. The document also calls G(P,D) the
group generated by these 8 permutations and contains a number of results about
composition of these permutations. The question of how much the shrinking
results depend of which φs we will compose with each other is studied below.

18.6 Shrinking vs. Choice of Key and IV Bits - Key 208

For example potentially if we just compose φK0 for some K with all bits at 0. It
is then important to see that the case φK0 will not35 occur in a real life attack.
Nevertheless we can study how the space shrinks also in this36 case.

In Table 5 below we present some results for φK0 space size and key 208 as
defined in Table 10 and using the fast method of Section 18.4. On the left in
Table 5 we have all bits at 0, and on the right we look at random sequences

35 If it does occur we would probably be able to exploit its periodic structure in various
slide or self-similarity attacks [25, 34].

36 This case does not differ from the general case in practice as we will see later
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of type φ3 ◦ φ2 ◦ φ7 ◦ φ4 or similar, which is more realistic compared to how a
real attack would operate. In fact no difference of practical importance was ever
observed. The results are very similar for every key and for every IV.

Table 5. Output space size for key 208 with all key/IV bits at 0 with φK0 (left) and
for φKs (tight) with a randomly chosen sequence s ∈ {0− 7}K

key nb K output space

208 0 236.0

208 1 235.0

208 2 234.4

208 4 233.6

208 8 233.0

208 16 232.1

208 32 231.2

key nb K output space

208 0 236.0

208 1 235.0

208 2 234.5

208 4 233.8

208 8 233.0

208 16 232.2

208 32 231.3

Overall we see that for key 208, the shrinking property is not very strong,
and it is not true that we can shrink the space more substantially by increasing
the number of iterations.

18.7 Weaker Rank-Deficient Keys in KT2b Style

An interesting question is whether we can generate some keys weaker than 208.
In this sub-section we present one method to to this, which is not yet very
good, another method will be studied in Section 18.8 below. For example we can
try to generated weaker keys starting from KT2b conditions which are already
potentially SUFFICIENT for T-310 to be totally secure, cf. Thm. D.6.1, except
that we allow the rank to be deficient and lower than 9.

Table 6. New key 308 based on class KT2b except for matrix rank condition M9.

key nb D P rank of B

308 0,16,2,8,24,20,11,32,4 6,35,33,17,26,13,5,27,9,10,19,18,12,30,21,15,34,25,23,36,31,14,22,29,3,1,28 8

15 0,4,17,12,35,32,2,24,20 15,13,33,34,6,8,5,3,9,18,14,22,28,30,21,31,7,25,26,16,27,11,23,29,19,1,36 9

We can now compare how the space shrinks with key 308 compared to 208:

Table 7. Space shrinking comparison of keys 208 and 308 with φKs , random s.

key nb K output space

208 0 236.0

208 4 233.8

208 16 232.2

208 64 230.2

key nb K output space

308 0 236.0

308 4 233.7

308 16 231.9

308 64 229.8

We see that key 308 is only slightly weaker than key 208. The idea that we
need to give up on to KT2 and used a greatly reduced set of conditions KT2b in
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order to generate weak keys for T-310 does not seem to work well. Alternatively
we need to remove even more conditions, cf. Section 18.8 below. More precisely,
in the following sub-sections we will see that we can find substantially weaker
keys than 308 also if we follow absolutely all of some 40 rules mandated for KT2
keys, except (again) for the rank condition, cf. Section 18.9 below. We will also
see that if we really want to produce the weakest possible keys we should rather
try indeed random keys which satisfy a really minimal set of conditions KT3d,
cf. Section 18.8 below.

18.8 Class KT3d - More Weak LZS Keys Generated At Random

An interesting question is: if we generate D,P at random with a really minimal
number of conditions, such as and we are still avoiding any sort of “anomalous”
situation such as such as key 17 which has P (25) = P (26), cf. [44], how secure
this would be? For this we are going to define our own class of keys called KT3d
with a set of conditions which we consider a strict minimum, we define:

(P,D) ∈ KT3d⇔ all the following hold:D and P are injective
∀(i, j) ∈ {1, . . . , 27} × {1, . . . , 9} : Pi 6= Dj

∃j1 ∈ {1, . . . , 7} : Dj1 = 0

Remark. KT2 and KT2b are included in class KT3d, but KT1 are not,
because they have repeated entries of type P (13) = D(7).

Now the question is how secure are these keys w.r.t. to the space shrinking
properties such as in Table 5. In Table 8 we provide several examples of keys
of type KT3d. For comparison purposes we also include key 16 of [44] which
according to [80] is a special key which emulates a permutation on 27 bits of
the so called SKS cipher. Finally, we include several previously studied “Rank-
Deficient” keys in KT2 or KT2b style, and regular key 15 of [44] which is of type
KT2.
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Table 8. Examples of keys of type KT3d and their space shrinking properties

key nb D P |φ0({0,1}36)| |φ40({0,1}36)| |φ160 ({0,1}36)| |φ240 ({0,1}36)|

934 0,4,20,12,14,9,19,7,10 21,3,16,25,28,30,26,11,1,
5,6,32,36,29,24,2,23,33,
27,34,8,18,17,31,35,13,22

232.8 227.7 224.3 223.5

930 18,19,0,23,21,10,25,20 33,34,28,31,32,35,6,24,9,
16,15,30,29,3,14,26,11,
27,5,2,4,8,36,22,7,12,17

230.3 223.6 221.0 220.0

914 30,33,14,21,31,0,36,3,35 26,29,27,23,17,10,20,6,7,
16,32,25,2,22,15,9,11,24,
1,18,5,13,8,12,4,28,34

230.4 222.3 220.0 219.2

913 9,11,34,0,2,3,26,7,33 5,17,28,32,29,30,13,25,10,
23,36,31,21,14,15,22,18,
27,35,12,16,20,6,19,8,4,1

229.7 222.8 218.8 217.9

912 11,34,2,0,9,26,3,7,33 31,17,28,25,29,30,13,5,10,
24,14,23,36,21,15,22,18,
27,35,12,16,20,6,19,8,4,1

231.2 224.0 218.2 217.2

911 34,11,2,9,0,26,3,7,33 25,17,28,32,29,30,13,5,10,
23,14,24,21,36,15,22,18,
27,35,12,16,20,6,19,8,4,1

230.3 223.1 218.4 217.3

206 4,0,32,2,35,17,12,20,24 15,13,33,18,34,8,5,6,9,30,
22,14,16,3,21,31,7,25,26,
28,27,11,23,29,19,1,36

235.1 234.0 232.9 232.3

407 0,24,20,8,16,2,11,32,4 17,7,33,6,10,13,5,27,9,26,
22,18,12,30,21,15,34,25,23,
36,31,14,19,29,3,1,28

234.0 232.4 230.1 229.5

207 0,24,20,8,16,2,11,32,4 7,6,33,26,17,13,5,19,9,10,
27,18,12,30,21,15,34,25,23,
36,31,14,22,29,3,1,28

234.0 232.2 230.3 229.3

15 0,4,17,12,35,32,2,24,20 15,13,33,34,6,8,5,3,9,18,
14,22,28,30,21,31,7,25,26,
16,27,11,23,29,19,1,36

236.0 236.0 236.0 236.0

Observations. We see that the vulnerability of keys in class KT3d against
space shrinking attacks varies very substantially for different keys in KT3d. The
image space size of a typical KT3d key is less than 235 and by trial and error,
we have NOT been able to generate a single key of type KT3d with image size
of 235, even though we know that such keys exist, for example 208 except that
these subclasses do NOT occur at random with a sufficiently large probability.

18.9 How Output Space Reduction Produces Bias

In this paper we apply the following heuristic:

Conjecture 18.9.1 (Bias As A Result of Output Space Reduction). If
for every sequence s of IV bits and key bits, φks does reduces the size of the
output space to M frequent elements of IF36

2 , the we expect that for very α the
output Uα will be biased with the same probability distribution as for a choice
of M random elements of IF36

2 .

Justification: This is unlikely to be true in general, for example if φ is a mapping
IF36

2 → IF36
2 which copies 25 bits and fixes the last bit to 0, for all α 6= 36, and

we have a very strong bias for the last bit. However we expect that this should
be true in practice, and this will be the basis to estimate the bias as a function
of M which we expect to be approximately O(

√
1/M).

Below we present some experimental results for one key and IV sequence
chosen at random for several weak long-term keys we have generated. This sign
of the bias changes for another pair of IV,key, and the number of secret key bits
used is limited to 2k for φk therefore it is realistic to expect that the attacker
can guess these bits. In this table we average the bias for several different keys,



Cryptographic Security Analysis of T-310 41

while keeping the same fixed IV. The keys used here defined in Table 8 and in
Table 10.

Table 9. Simulations for φ16 which shows the average bias in absolute value for the
Uα bit of cipher state after 16 rounds, for one well-chosen αbest, and averaged for any
α ∈ {1− 36} and over many keys.

LZS Mφ16 αbest |P (Uαbest = 0)− 1/2| average(1-36,keys)

206 232.9 16 2−14.6 2−15.5

208 232.2 2− 2−15.6

407 230.5 2− 2−15.2

207 230.2 2− 2−15.3

16 227.0 15 2−13.1 2−14.0

17 231.2 2− 2−

27 216.1 1 2−9.0 2−8.0

28 218.7 2− 2−10.8

934 224.3 23 2−10.5 2−12.9

930 221.0 2− 2−

914 220.0 21 2−10.3 2−11.7

913 218.8 1 2−11.3 2−10.9

912 218.2 1 2−10.6 2−10.7

911 218.4 29 2−9.8 2−11.0

We observed that the bias is quite substantial for any value of α and for any
weak key studied, and it seems to follow a simple law O(

√
1/M) which is what

we would expect for a random function with M possible outputs.
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19 On Chosen LZS Attacks

In this section we look at the question what kind of attacks are possible given all
the properties studied in the previous section. An actual attack will be described
in the next section.

19.1 A Problematic LZS Question

The key question is as follows: the function φ in T-310 is meant to be bijective.
This question was not considered in [76] because this property is NOT required
in normal operation of the cipher, see Section 11.1. Yet it is more or less clearly
stated inside page 56 [80]. Now there are two crucial questions:

1. Is there a plausible scenario for a real-life attack where the LZS would not be
bijective? Could it for example be quite difficult or cumbersome for German
security services employees to detect that some long-term key is faulty, and
therefore it could be used for some time without anyone noticing?

2. What are the consequences of an LZS being non-bijective? Is there a really
fast attack significantly faster than 2230?

3. Is there an attack faster than say 250 feasible to execute in practice on a
PC?

4. Is the attack scenario realistic: or for example all that we would get would
be some sort of attack with repeated IV such as one previously outlined in
Section C.4? Therefore just another37 attack with repeated IVs would not
be a game changer.

5. Could we have something like a ciphertext only attack? This is a rare thing
in cryptanalysis research, cf. [53, 69].

In what follows we are going to see that the answer is yes to all these questions.

19.2 On Rank Deficiency of Some Otherwise Well-Formed Keys

So of the keys such as 207 we have studied above have some interesting proper-
ties. We define a “Rank-Deficient” KT2 long-term key as follows:

Definition 19.2.1 (Rank-Deficient KT2 key).
It will be any key which satisfies all of the some 40 technical conditions specified
in pages 59-60,114-115 and 117 in [80] and in Section D except the very last rank
condition about the matrix B of page 60.

Remark. If a key is “Rank-Deficient KT2” it is likely that this would be
unnoticed. The condition which the KT2 keys must satisfy are numerous and
very tedious to check. Some of them at random could be checked by a person
which is charge with approval of such key, and the key would be the approved
trusting that the employee which has generated it has done a good job. The
original documents do NOT mention if KT2 have been proven to be bijective

37 For sure the designers of T-310 knew about such attacks cf. [80, 46] have re-engineered
the process to avoid them, and would not agree that this is a realistic attack. More-
over we already have developed several attacks with repeated IVs, for example in
Section 21 and another in Appendix G.
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[80]. The employee could have some doubt whether it is useful at all to perform
any check on the keys and what properties are really required and the cipher
would not be secure with.

Moreover out of all the conditions, this last condition could be the one which
employees could systematically omit to verify. The reason for that that the ma-
trix is NOT fully specified in [80]. The statement is highly ambiguous and does
not meet the standard of a routine check people should run frequently. This ma-
trix statement is poorly written with a high degree of ambiguity, and a reader
could initially be puzzled by this condition, rather than accept it and just check
it. This is because it is NOT at all obvious that such a matrix should exist in
the first place, which we show in Lemma D.4.1 page 74. Moreover this condition
requires a computer simulation and just cannot 38 be checked manually by a
sort of person which would have the skills and understanding to check the other
conditions which are written in elementary maths language. Overall, we believe
that this check is very likely to be disregarded39 in a real-life situation.

38 To check this condition require slightly different skills and set of mind. It could only
be checked through a complex computation which is prone to errors if done by hand,
where the object of the study is not described in a readable way, and which could
only plausibly be done with a computer algebra software such as NTL/Maple/SAGE
we have used. Yet most East-German security personnel in 1980s would not have
access neither to any computers of any sort, nor to computer algebra software we
take for granted today.

39 We have ourselves skipped this check for a long time until we discovered keys with
bad properties actually exist, cf. Section E.5.
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20 A Ciphertext-Only Faulty LZS Correlation Attack

In this section we describe an interesting new attack on T-310. This attack
has potentially a very low complexity and we believe that this a practical40

attack which very significantly undermines a confidence in T-310 algorithm. It
is a non-standard form of attack, not one which appears frequently in crypto
literature. Yet is also an attack which is likely to have a significant impact
on the real-life security of this government encryption system which will be
shown potentially highly vulnerable41. It combines four major vulnerabilities
of T-310 we have previously uncovered: the Zero-Value attack of Section 17.2,
the plausibility of a weak key being used in the real life studied in Section 19,
the correlations of Table 9, and the plaintext statistics of Table 3. In the light
of these vulnerabilities, another property of T-310 comes to light as a serious
vulnerability the importance of which has been heavily underestimated so far.

20.1 On Key Scheduling in T-310

More precisely T-310 has an extremely weak42 key schedule, and it should not
be used, because there is a significant risk of a serious attack. To be honest,
for a long time we did not think that anything was really wrong with T-310
key scheduling. In the same way, nobody thought for more than 20 years that
the highly-regular key scheduling in GOST could lead to any significant attacks
and until 2010 there was simply no attack on GOST, which is clearly stated in
[72]. Then attacks on GOST have literally exploded, cf. [34, 38] for pointers to
abundant 200+ pages long recent research on this topic. Initially we thought
nothing could go wrong with a perfectly periodic key schedule, because the
strongly a-periodic character of the IV handing in T-310. We were wrong as we
are going to see below. This is due to a new attack scenario which we have not
anticipated. Moreover we are going to show that such an attack could pose a
significant threat to on an encryption system used in the real life.

40 It could lead to decryption of communications encrypted by T-310 in the real life
and in the ciphertext-only scenario as we will show later.

41 It does not really matter whether this attack could have happened or if it has actually
happened. The fact alone that this sort of attack is possible at all shows that T-310
is not a good cipher. Even though very clearly, in theory T-310 has been designed
to avoid also this type of attack, cf. two theorems about KT1/KT2 in Appendix
C.10 and D.6, there is serious problem. The mathematical foundations which make
the cipher resistant to this attack, do not make it resistant to it in practice. An
enemy could exploit the excessive complexity of how LZS are specified, or play on
their over-confidence about the security of their cipher machines, and try to convince
people to use a faulty key and it will be hard to check if it is deficient.

42 Such as many other ciphers which were badly broken in the past cf. for example [7,
34, 38, 25–27] and this would a certainly be a good reason for a cipher to be rejected
as a candidate for an encryption standard, cf. [7, 34, 38].
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20.2 A Ciphertext-Only Correlation Attack on T-310
In this section we show how to combine the biases of φk output in Table 9 and
biases on the plaintext due to Table 3 and Thm. 17.2.1 in order to decrypt T-310
communications in the ciphertext-only scenario. Our correlation attack works as
follows:
1. We apply the Zero-Value attack and we will exploit a proportion of 2−5 of

available ciphertext data.
2. We recall from Section 17.2 that if Cj = 05 we have Pj = Bj .
3. We can now approximate certain not all bits of the plaintext by Pj,I−V =
Bj,0−5 which holds for all ciphertext characters Cj = 0 we selected.

4. by approximating the c and approximate the 5 bits of Bj knowing that
Bj,0−5 = (a7+13(j−1), . . . , a11+13(j−1)) and all these bits are biased using
Table 9.

5. We know the expected average value of the bias but we do not know the
sign of the bias. The sign of the bias depends on the values of key and IV
bits preceding any of the (a7+13(j−1), . . . , a11+13(j−1)) which by definition
are equal to u127(7+13(j−1)),α, . . . , u127(11+13(j−1)),α. We know the IV bits at
any location, we just need to guess key bits at certain locations.

6. In our attack we are going to guess a window of say 48 keys bits for a window
of 24 consecutive rounds. The same window of 48 bits is repeated every 120
rounds, (with different IVs which are known to the attacker).

7. We will work on individual bits, and if we want to be able to know the sign
of a bias reported in Table 9, we need to know the 32 key bits preceding the
actual bits extracted which are um,α with m = 127(B + 13(j − 1)) with five
possible B = 7− 11.

8. We assume that the attacker disposes of a pre-computed table which indi-
cates the sign σK,IV = +1 or −1 for the bias for any 32 bits key and any 16
bit IV for φ16s . This table requires only 1 Terabyte of storage (248 bits).

9. The probability that any Bj,0−5 we want to compute, can be approximated
as a biased bit of type say 1/2− 2−5.8 with the sign know to the attacker, is
equal to (48− 32)/120 ≈ 2−2.9.

10. In order to simplify our attack, we will only work on plaintext bits I and III
in Table 3 which both have a bias of approximately ±2−3.0. We need to pay
attention to the signs, let σI = +1 and σIII = −1 for these two bits.

11. The attacker will now compute many biased bits which are all more likely
to be 0 than 1, and which combine the biases due to the plaintext and due
to φ16. Then he will count 0s and 1s and if the bias is sufficiently large he
will be able to confirm if his choice of 48 was correct.

12. The attacker assumes that Bj,0 = (1 + σK,IV )/2 which is true with proba-
bility of about 0.5 + β where β is a positive value from Table 9, for example
for LZS-27 we have β ≈ 2−8. Similarly we have Bj,2 = (1 + σK,IV )/2 for a
different choice of 32 key bits and 16 IV bits which pertain to this position.

13. We know that Bj,0 = Pj,I and Bj,2 = Pj,III for all ciphertext positions with
Cj = 05 selected.
The sequence of bits the attack produces will be simply all the (1+σIσK,IV )/2
or (1+σIIIσK,IV )/2 for all the cases considered. We call these bits available
to the attacker “the B − I set”.
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14. We apply the Matsui’s piling-up lemma [64] and we see that the overall bias
for our bits which are (1 + σIσK,IV )/2 or (1 + σIIIσK,IV )/2 is going to be
equal to γ = 2−3.0β.

15. In order to distinguish these biased distributions and have results which is
stronger than 8 standard deviations we need to generate about 82γ−2 ≈
216+6.0β−2 of biased bits in “the B − I set”.

16. We need to work with 8 standard deviations exactly: we apply the Gauss
Error function cf. [39] which leads to probability of 2−49.5 of a false positive
which is sufficient to confirm if our 48-bit key is correct.

17. We get 2 bits for our “the B−I set” when we have ciphertext character with
Cj = 05 which happens with probability 2−5 AND when simultaneously the
window of 32 bits needed is contained within our window of 48 bits which
happens with probability 2−2.9.

18. Therefore we need overall 216+6.0+2.9+5β−2/2 ≈ 231.9β−2 of encrypted char-
acters in order to recover 48 bits of the key in time which is approximately
248+31.9−5−2.9β−2 ≈ 272β−2.
Here −5− 2.9 comes from the fact the we can pre-select ciphertext bytes for
the attack independently of the key depending on the window position.

19. Once we have a plausible candidate for 48 key bits, we can re-do the whole
attack with a different and preferably overlapping interval of 23 consecutive
rounds and 48 key bits. Making these intervals overlap with those where key
bits are already known makes that these extra steps will be substantially
faster and easier and their cost can be neglected.

Example of Application - Key 27: With key 27, we have β = 2−8.0

typically, and the attacker can recover the full 230-bit encryption key in time of
288 given about 248 characters of encrypted data in the ciphertext-only scenario.

Note: This attack can be further optimized to be more flexible. If we dispose
of more data we can start with the number of key bits guessed smaller than 48
bits. If we dispose of more data, we need to guess more bits.



Cryptographic Security Analysis of T-310 47

21 Decryption Oracle Attacks and Keystream Recovery

A plausible attack scenario is that the attacker would have access to a decryption
oracle. The attacker can send any IV and the ciphertext and can recover the
plaintext. In this case we are going to show (over the next few pages) that the
cipher is not secure.

For example the attacker can send several messages with the same IV with:

C0 = P0 ·Mr0 ⊕B0 ·Mr0

Then in all these encryptions r0 and B0 will be the same. So for two encryp-
tions with the same IV we have:

C0 ⊕ C ′0 = (P0 ⊕ P ′0) ·Mr0

and more generally if ciphertexts submitted to the oracle have length k char-
acters

Cj ⊕ C ′j = (Pj ⊕ P ′j) ·Mrj for all 0 ≤ j < k.

This allows to recover Mrj uniquely in a proportion of 1-1/32 of cases where
Cj 6= C ′j . In addition the attacker could chose ciphertexts such that Cj 6= C ′j .
Moreover we recall following Section 16. that Mrj does almost always [but not
always] allow to determine Rj :

r0 =

0 if Rj = (0, 0, 0, 0, 0)
0 if Rj = (1, 1, 1, 1, 1)
32− r if R0 ·Mr = (1, 1, 1, 1, 1)

Therefore we need to the proportion of 1/32 cases where rj is 0 modulo
31, which cases create an ambiguity on the bits R0 = a1−5. One of the two
problematic events happens with overall probability less than 2/32. Overall in at
least 30/32 cases over all possible pairs P/C, P ′/C ′, where the 5 bits ofR0 = a1−5
are uniquely determined and rj 6= 0. We obtain the following overall result:

Theorem 21.0.1 (Decryption Oracle Attack on u127). For every IV cho-
sen by the attacker, given at most about 2·32/30 ≈ 2.13 “Chosen IV and Random
Ciphertext” (CIVRC) queries on average, the attacker can obtain a1 = u127,α
with a negligible computation effort. We will assume that α is known or we
guess it (it has low entropy and many choices are substantially weaker). More-
over, with “Chosen IV and Chosen Ciphertext” (CIVCC) queries, we only need
about 2 · 32/31 ≈ 2.06 CIVCC queries where the attacker can make sure that
C0 6= C ′0 for any pair.

Proof: The result is straightforward and all these steps were already give above.
In the CIVCC case the attacker can make sure that C0 6= C ′0 for any pair by
selecting up to 32 chosen ciphertexts with different C0. This cannot be done for
more than 32 cases, however the probability that the attacker would ever need
more than 32 calls to the decryption oracle (due to the fact that for each pair

he would get rj = 0 is extremely small, of the order of (1/31)(
32
2 ) ≈ 2−2457.

Key Recovery Step. Access to many values of a1 = u127,α for different IVs,
should be sufficient to recover the T-310 key with a SAT solver [9] or ElimLin+
attack [79] in a similar way as for 160 of KeeLoq cf. [25, 26]. The exact time and
data complexity of this attack will be studied in a future update of this paper.
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21.1 General Black-Box Decryption Oracle Attack

We generalize the same attack for a1, a2, a3, . . . , ak. It is possible to see that
the data complexity grows quite slowly with k. We will now consider only the
(stronger) CIVCC attack, as we find it hard to imagine a scenario where an
attacker could do CIVRC and not CIVCC.

Theorem 21.1.1 (General Decryption Oracle Attack). For every IV cho-
sen by the attacker, and for every k ≥ 1, the attacker can obtain all of a1−k with
a computation effort linear in k and with about K ≈

√
(log2(k) + 10)/2 decryp-

tion CIVCC queries on average with one fixed chosen IV and random ciphertexts,
and with ciphertexts length of k characters.
Proof: We assume that we have K decryption CIVCC oracle queries (with chosen
IV and chosen ciphertexts) with ciphertexts of length k characters. This gives
us about K2/2 pairs where we could try to apply the formula:

Cj ⊕ C ′j = (Pj ⊕ P ′j) ·Mrj for all 0 ≤ j < k.

and following the analysis in the previous Section 21 exactly and only two
things can go wrong in each of these cases. Either we have Cj = C ′j or rj = 0.
This again happens with probability less than 2/32. The probability that we
need at least K CIVCC is the probability that for every j all the K2/2 pairs fail

to work, i.e. less than k · (2/32)K
2/2. If we want for example a 0.1 % failure rate

we need k ·(2/32)K
2/2 ≈ 2−10 which leads to log2(k) = 4K2/2−10 and therefore

we get K ≈
√

(log2(k) + 10)/2. This quite is small in practice, for example for
all k ≤ 4 million, we need not more than K = 4 decryption queries. and for
k ≤ 240 we would use K = 5.

22 A Decryption Oracle with a Slide Attack

In the previous section Thm. 21.0.1 we see that in the decryption oracle scenario,
it is relatively easy to recover the keystream components Rj , Bj by asking for
several decryptions with the same IV and we need about K = 2 sometimes K = 3
decryption queries per IV. This gives access to a1 which however still depends
on 230 key bits. In addition we get access to further a2, a3, . . . very cheaply: we
don’t expect that we will ever need to do more than K = 4 decryption queries
per IV for up to 4 million, cf. Thm. 21.1.1. This is what we are going to exploit
now. the starting point is that we have not yet used the full power of the chosen
IV attack scenario: the capacity to select many arbitrary IVs and therefore for
example well-chosen related IVs.

Now we are going to design our slide attack. There exist many different slide
attacks, e.g. [56, 25, 34]. We want to exploit self-similarity of the T-310 block
cipher: the key bits repeat every 120 rounds, and we need to adjust the IV bits
in order to obtain identical permutation. Then the question will be whether these
identical permutations can have identical inputs. Here is our first basic attack.

First we consider some integer s such that:

1) 120s is small mod 127
2) 120s is not too large in absolute value (or we will need to decrypt long messages)
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For example s = 18 has 120·18 = 127·17+1. Of s = 1 given 120·1 = 127·1−7.
The first example, as we will see later, is one we have designed for “stronger”
long-term key settings of T-310. The second example is meant to work more
easily for “weaker” long-term key settings of T-310.

Now the main idea in the attack is that if by some sort of “happy” accident
for some encryption with some IV, we have

u120s+0 = u0 = 0xC5A13E396,

then the attacker can detect this fact efficiently.
It should be noted that this equality on 36 bits normally happens with prob-

ability 2−36 except in some special cases such as few steps after 0xC5A13E396,
in which cases this probability is lower. However we do not see a method for
the attacker to obtain a better probability than 2−36, the attacker needs to try
many cases where this property can happen accidentally and eventually he will
succeed.

23 Slide Property Detection With Decryption Oracle and
Internal Correlations

Here is how the attacker can detect/confirm of his guess is correct:

Theorem 23.0.2 (Sliding Property Detection with a Decryption Ora-
cle). For every IV chosen by the attacker, and for every s ≥ 1, the attacker
can detect if u120s+0 = u0 with near-certainty with decryption of K ≈

√
log2(k)

texts of length 120s+O(1) and time complexity about in
√

log2(k) as in Thm.
21.1.1 where k is fixed integer for every s, and in general it grows exponentially
with43 d.

Proof: We describe how the distinguisher works in four Steps 1-4.
Step 1. We select two IVs which are distant by 120s steps of our 61-bit

LFSR, called IV, IV ′. We recall that 120s mod 127 is small. We recall that the
key is repeated after every multiple of 120 rounds, but the keystream is extracted
every 127 rounds. Then IF in some two encryptions have the same state

u0 = u′120s [Sliding Assumption]

which occurs with probability 2−36 THEN we have

ui = u′120s+i
for any number of steps i ≥ 0.
Step 2. Then it is easy to see that for both encryptions the attacker can

recover the keystream with roughly at most 4 decryption queries per IV, cf.
Thm. 21.1.1.

Step 3. Now we have 120s = 127t+d, where d is small. For example (s, t, d) =
18, 17, 1. This means that IF again u0 = u′120s the keystream extracted from the
second encryption is shifted by 127t + 1, i.e. it is extracted at t “big” ai-scale
steps later with 127 rounds each, and with d-round iteration of φ offset. So we

43 Here d is as described earlier. It could also be defined as the integer which minimizes
d = 120s− 127t in the absolute value.
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cannot hope that these bits will be identical BUT we can hope they will be
somewhat correlated to each other. We have

aj = u127j,α
and

a′j = u′127j,α = u′127(j−t)−d+120s,α = u127(j−t)−d,α

Fig. 23.10. Slide Attacks on T-310 - the IVs are identical at positions which are also
distant by a multiple of 120, the keystream is shifted by φd, where d can be positive
or negative.

23.1 Step 4 - Simplified Correlation Analysis

Now as a first approximation, we see that the attacker has access to sequences
u127j,α and u127j′−d,α for any j, j′ which are shifted by d = 1 encryption round
φ. The question now is if there is a correlation between these 2 bits which
makes that the slide assumption u0 = u′120s will be detected.

This depends on the values of α, d, the particular correlation characteristics
of the Boolean function Z used (such as correlation immunity), and on the long-
term key D,P . We conjecture that for every α there exists one or several d
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such that our attack works. For example we can use our example of a long-
term key described in Section 8. Here for d = 1 we have observed that we have
u127j−1,α = u127j,α with probability 0.5− ε with ε = 2−3 which means that the
attacker can easily detect if our sliding condition on 36 bits is true for α = 17
[similar results can be obtained for other values of α].

Then for d = −7 we have observed that we have u127j+7,α = u127j,α with
probability 0.5 − ε with ε = 2−11 which means that the attacker can easily
detect if our sliding condition on 36 bits is true for α = 21 [similar results can
be obtained for other values of α].

23.2 Step 4’ - Actual Correlation Analysis

Things are less simple than in the section above. It is NOT true that the attacker
has access to sequences u127j,α and u′127j,α for every j. More precisely, following
Section 16, only 10 out of every 13 bits from Thm. 21.1 can be recovered on
each side. This makes that only some pairs u127j,α, u

′
127(j−t),α will be actually

available, actually a proportion of (10/13)2 ≈ 0.59.
This is of course sufficient to detect the correlation with about twice higher k

than expected previously. Quite happily we can easily afford up to k = 4 million
with just K = 4 decryptions with the same chosen IV, cf. Thm. 21.1.1. This
is of course sufficient to detect the correlation with about twice higher k than
expected previously. Again for k up to 222 we need just K = 4 decryptions per
IV, and for k up to 240 we need K = 5. This ends the proof of Thm. 23.0.2.

23.3 Sliding Step - Summary

We see that the attacker can obtain P/C pairs on 36+36 bits for the T-310
block cipher for 120s rounds away and with arbitrarily chosen IVs, and where
the second IV is obtained by closing by clocking the LFSR 120s steps backwards.

More precisely, following Thm. 23.0.2 the attacker can detect if the internal
states on the 36 bits are identical. He can know with near-certitude that

u0 = u′120s [Sliding Assumption]

is true for some pairs IV, s and for the current secret key.
This condition is true with probability 2−36 in general and when it occurs

the attacker will detect it.

23.4 A Basic Full Sliding Key Recovery Attack with d = −7

The question is now HOW to break this block cipher knowing that the attacker
can identify P/C pairs for 120 rounds with s = 1. We can thew follow the whole
process described above more than once and obtain several P/C conditions on
36 bits (one is not sufficient to uniquely determine a key on 230 bits).

1. We have d = −7 and s = 1.
2. The attacker try some 8·236 = 239 IVs on 61 bits, to discover some 239−36 ≈ 8

“good” IVs where he has u120s = u0 = 0xC5A13E396. At this moment he
does not know which IVs are the “good” ones.

3. For each of IVi, i = 1 . . . 239 the attacker will step the IV exactly 120s step
backwards to obtain IV ′i .
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4. The pairs IV, IV ′ are always shifted by a multiple of 120 rounds so that they
key bits si,1−2 are also aligned.

5. Memory requirements are very small.
6. Then we apply Thm. 23.0.2 cf. also Fig. 23. The attacker can see if u120s =
u0 = 0xC5A13E396 by aligning 2 sequences aj and a′j+t, where 10/13 bits
only are known to the attacker, discarding all the pairs where either of
aj , a

′
j+t is not known, and counting how many times we have aj = a′j+t.

In order to estimate the data complexity needed to distinguish beyond rea-
sonable doubt if we observe a correlation, we could use the Gauss error
function. Here the rule of thumb is the same as in linear cryptanalysis: if
we want to make sure that we are beyond 10 standard deviations, we need
approximately k = 120s+ 102ε2 of encrypted data.

7. Here for d = −7 we have ε = 2−11 so we need about k ≈ 229 of encrypted
data which will give K = 5 in Thm. 23.0.2.

8. The data complexity is about 8 · 239 ≈ 242 chosen IV chosen ciphertext
decryption queries with which are 225.5 bytes each in length.

9. The time complexity is about 239 ·229 ≈ 269.5 CPU clocks spent in examining
correlations plus the time to recover the key from 8 P/C pairs for 120 rounds
by a SAT solver attack. As long as this step takes less44 than say 269 CPU
clocks, this does NOT change the complexity of our attack.

Overall we see that we can recover the 230-bit key of T-310 with about 239

chosen IV chosen ciphertext decryption queries with messages of less than 229

characters each. The time required is about 265 CPU clocks and memory required
is small.

23.5 An Advanced Sliding Key Recovery Attack with d = 1

In the case of some (stronger) T-310 keys, or if the SAT solver attack does not
work as well as expected, we provide another attack with d = 1, cf. Appendix
G.

24 On Correlation Immunity in T-310

Correlation immunity, has been an important goal in the design of encryption
machines for many decades, cf. [81]. It is possible to see that cases where our
Slide-Correlation attack of Section will work with small s = 1, 2, . . . are very
rare. In a cipher such as T-310 there are many methods to insure that for many
choices of D,P, α our attacks following Section 22 and will not work. In this
section we focus of correlations with s = 1 used in our later attack of Appendix
G. Similar analysis for s = 7 could be very complex to handle. Here are some
reasons why such correlations will not exist.

44 For example, in Table 1, Section 9, page 25 in [34], the time complexity with as
number of P/C pairs grows. We expect a similar result here and arguably 120 rounds
of T-310 are the equivalent of 8 rounds of GOST in terms of complexity and key
usage.
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One example would be a consequence of a “good” choice of the Boolean
function Z which has a certain level of correlation immunity. In many cases we
don’t even need to study Z() because a bit at α at input of φs simply does not
affect the same bit α at the output of φs for a small s and therefore a correlation
is impossible.

In another example, a lack of correlation could be deduced from a detailed
analysis of Fig. 3.12 showing that even if bit 29 was one of the inputs of Z1,
which it isn’t, the bit u20 still prevents any correlation with s = 1 and α = 29
form existing.

Another example is that lack of correlation can be a result of some bits being
not used in T . For example we have the following two easy results:

Theorem 24.0.1. If α is not a multiple of 4 and it is one of the bits not used
by T in Table 1 page 26, it is easy to see that there will not be any correlation
for s = 1 rounds.

Proof: If α 6= 4k it will belong to a branch other than I1 in Fig. 4.4 page 10. Then
after 1 round the perturbation will not affect T and move to another branch.
The output at bit α after s = 1 rounds is therefore totally independent form the
input flip at α and these two bits are therefore not correlated.

We can also obtain a stronger result:

Theorem 24.0.2. If α, α+ 1 are both present in the list of bits not used by T
in Table 1 and if α = 4k+ 1 or α = 4k+ 2 than there will not be any correlation
for any of s = 1, 2 rounds.

Proof: If α = 4k+1 or +2 it will belong to branch I4 or I3 in Fig. 4.4 after 1 round
the perturbation will not affect T and move to the branch I3 or I2 respectively
and become α+ 1, and after 1 more round it will still not flip anything in T and
move to branch I2 or I1. A bit flip has just moved to another location different
than α. Again, the output at bit α after s = 1, 2 rounds is independent form the
input flip at α and these two bits cannot be correlated.

Remark. Once our perturbation arrives to branch I1 it is guaranteed to flip
one of the inputs of T , for all KT1 keys, this happens for reasons of P () taking
all the possible 4 · k values, cf. [76] and Section 5.4.
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25 Summary of Strong and Weak Points in T-310

In this paper we study the peculiar internal structure of the T-310 cipher.

25.1 On Per-Round Weakness vs. Number of Rounds

Our key observation is that there is a strong internal triangular structure and
that nearly all these properties can be traced back to one single assumption
where we disconnect/replace just one bit in D in an unbalanced Feistel scheme.
These peculiarities make one round of this cipher clearly weaker than comparable
historical block ciphers such as DES or RC2. This is exacerbated by low “per-
round” gate/hardware/multiplicative complexity, which is relevant in software
algebraic and/or SAT solver attacks, cf. Section 15. Finally we show that T-310 is
not very strong against differential cryptanalysis, cf. Section 9. The question is
now45 is this “per round weakness” compensated by a larger number of rounds,
AND by the fact46 that47 extremely few48 bits extracted from the internal state
(1 bit every 127 rounds) are actually used for encryption. Overall we expect
that the cryptanalyst will have hard time breaking T-310 and probably the per-
round weakness of T-310 is most probably NOT a weakness “per se” and can
be mitigated by the fact that T-310 consumes as many as 1651 rounds of the
permutation φ per each encrypted character.

25.2 Definite Vulnerabilities of T-310

We can however already say that we have identified several serious vulnera-
bilities in the design of T-310. These properties are able to very substantially
degrade the security of T-310 for no apparent reason. It appears that they
simply cannot be defended49 by any engineering or practical reasons known to
us, such as the cost or speed of encryption. Several examples of such properties
of T-310 with variable levels of severity are given in Sections 4.5, 7.6, 8.5, 9,
17.2, 20.1, 18,18.9,19, 20.1 and in Section 22. Most of these should be considered
as either engineering mistakes or at least as definite areas where the cipher is
weaker than it could otherwise be.
45 This is not unusual, the same problem occurs in for example in [34, 18, 32], and

also for about half of block ciphers submitted to the NIST AES competition in the
late 1990s.

46 This is quite unusual, and here T-310 appears to be substantially more robust
than nearly any other cipher known in crypto literature.

47 However overall this situation is not unusual if we look at broader context in which
one cipher could be used, for example to obtain a realistic card-only attacks MiFare
classic cipher, the extremely low quantity of data which the attacker can dispose
of is due to an extremely well engineered protocol in which the cipher is used, so
that the reader must authenticate first, and very little data can be obtained by the
attacker, at a price of exploiting an additional bug and a weak RNG, cf. [29].

48 Needless to say smart people in the industry have known this for years, see for
example [29, 60].

49 This sort of properties are usually due to the to the inclination by the designers to
mandate some simple and elegant internal structure and the popularity of certain
ideas among cipher designers.
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Some of these open interesting possibilities to potentially misuse the cipher
and make it weaker on purpose just by selecting a weak long-term key, see for
example Section 4.5, or in Section 19.

In a future version of this paper we are going to present a more detailed
evaluation of the complexity of various attacks on T-310.
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26 Conclusion and Summary of Our Attacks on T-310

T-310 is an important Cold War cipher. In this paper we study the peculiar
internal structure of the T-310 cipher and show that it has several serious vul-
nerabilities, but also that it is very strong in the sense that it extracts extremely
few bits for the actual encryption and a very large number of rounds will be used
to encrypt just one character of the plaintext. This property makes that T-310
seems substantially stronger than other ciphers form the same historical period
such as RC2, DES, or Skipjack. Cryptanalytic literature knows extremely few
examples where the cipher would actually be broken under such difficult circum-
stances. In one such example the attacker obtains only 4 bits from each larger
encryption [29]. In T-310 bits from round as high as 1397 are used to encrypt
just the first character. In spite of this difficulty in this paper we propose several
attacks on T-310.

For example our sliding attack on T-310 in Section 23.4, allows one to recover
the 230-bit key of T-310 with about 239 chosen IV / chosen ciphertext decryption
queries, which need to be 226 characters long. The time required is about 265

CPU clocks to recover a 230-bit key and memory required is small. This attack
requires some correlations to exist and will work only for some keys D,P, α, and
will not work for any of the actual historical keys. Then in Appendix G we present
another more complex sliding attack which uses another type of correlations with
s = 1. Other similar slide attacks will appear in a future revision of this paper.
Our preliminary conclusion here is that the designers of T-310 have made it
quite immune to correlations required by such attacks, cf. Section 24.

Another very important attack on T-310 is given in Section 20. We see that
the combination of regular periodic structure, deficient KT2 or other keys, can
lead to very strong attacks in spite of the fact that the IV expansion destroys
the perfectly periodic structure. We present a ciphertext-only correlation attack
which seems to work for every single weak key known to us, cf. Table 9. For
example with β = 2−8.8 for key 207 the attacker can recover the full 230-bit
encryption key in time of 290 given about 250 characters of encrypted data in the
ciphertext-only scenario. Or with key 27, we have β = 2−5.4 and time complexity
will be 283 and we need 243 characters of ciphertext. It is extremely rare to see
a ciphertext-only attack on a real-life government cipher50.

This result shows that there are serious possibilities for degrading the security
of T-310 by the choice of LZS, and we stress the fact that it quite difficult to
check all of some forty conditions which the LZS of type KT2 must satisfy, and
it would not be practical to check them routinely in the 1980s. At the same
time in this paper we show that both KT1 class, cf. Thm. C.10.1 page 69 and
KT2 class of long-term keys, cf. Thm. D.6.1 page 75, are mathematically proven
secure against this sort of potentially devastating ciphertext-only attacks.

50 This for example was not the case for Enigma during WW2 and the first ciphertext-
only attack on Enigma was found only in 1995, cf. [53, 69].
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Appendix.

A Glossary

We provide tentative English translations for a selection of German terms used
in T-310 literature. We do not guarantee the correctness of these translations.

Chiffrierverfahrens encryption method
LZS, Langzeitschlüssel long-term key (up to 94 bits)

Zeitschlüssel current secret key (230+10 bits)
SpS, Spruchschlüssel spelling key, the IV (61 bits)
Synchronfolge SYF synchronisation sequence SYF, contains the IV

bestehend aus 25 FS-zeichen consisting of 25 teletype characters
FS, Fernschreiber teleprinter

physikalischer Zufallsgenerator RNG, random number generator
PZG, Pseudozufallsgenerator PRNG, pseudo-random number generator

Eingabeeinheit input unit
Komplizierungsalgorithmus complication algorithm

Komplizierungseinheit complication unit
Zwischenfolge sequence

Verschlüsselungseinheit encryption unit
Bildung der Steuerfolge ai formation of the control sequence ai

Synchronisationseinheit synchronization unit
Erzeugung der Spruchschlüssel generation of IVs / spelling keys
und seine Umkodierung in SYF and their recoding in SYF

Umkodierung der empfangenen SYF recoding the received SYF
in Spruchschlüssel (gerführtes gerät) in a device controlled by IV

Kryptologische Eingenschaften cryptologic characteristics
Minimalperiode the period (for a sequence)

Primzahl prime number
0-1 verhältnis statistisch ratio/proportion of 0/1, balancedness

Grundtext-Geheimtext-Paares plaintext-ciphertext pairs
Sicherheit der Chiffrierverfahren security of encryption procedures

gegen dekryptierung against decryption
Gebrauchsanweisung instructions for use

zwei LZS-Klassen two classes of long-term keys
eineindeutig bijective
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B A Description of KT1 Keys

Here we provide a description of key class KT1 following pages 58 and Section
2.2 of Annex 1 on pages 114-115 and also Section 4.1. page 117 in [80]. An
incomplete (and therefore not quite correct) description which only included the
conditions from page 58 of [80] can be found in [76]. Here we provide a complete
set of conditions which define KT1.

(P,D, α) ∈ KT1⇔ all the following hold:

D and P are injective
P (3) = 33, P (7) = 5, P (9) = 9, P (15) = 21, P (18) = 25, P (24) = 29
Let W = {5, 9, 21, 25, 29, 33}
∀1≥i≥9D(i) /∈W
α /∈W (note: cf. also Fig. 9.9 page 22)
Let T = ({0, 1, . . . , 12}\W ) ∩ ({P (1), P (2), . . . , P (24)} ∪ {D(4), D(5), . . . , D(9)} ∪ {α})
Let U = ({13, . . . , 36}\W ) ∩ ({P (26), P (27)} ∪ {D(1), D(2), D(3)})
|T\{P (25)}|+ |U\{P (25)}| ≤ 12
D(1) = 0
There exist {j1, j2, . . . , j7, j8} a permutation of {2, 3, . . . , 9} which

defines D(i) for every i ∈ {2, 3, . . . , 9} as follows:
D(j1) = 4, D(j2) = 4j1, D(j3) = 4j2, . . . , D(j8) = 4j7

P (20) = 4j8 (note: this value is not any of the D(i))
(D(5), D(6)) ∈ {8, 12, 16} × {20, 28, 32} ∪ {24, 28, 32} × {8, 12, 16}
P (6) = D(8)
P (13) = D(7)
P (27) 6= 0 mod 4
∀1≥l≥9∃1≥i≥26P (i) = 4 · l
D(3) ∈ {P (1), P (2), P (4), P (5)}
D(4) /∈ {P (14), P (16), P (17), P (19)}
{P (8), P (10), P (11), P (12)} ∩ {D(4), D(5), D(6)} = ∅

Fig. 2.11. Some observations about internal dependencies inside one encryption round
φ, which hold for all KT1 keys (many also work with KT2), cf. also Fig. 9.9 page 22.
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C On Bijectivity of One Round φ

In this section we study the question whether the round function is always a
permutation, and what would be the [security] consequences of φ not being a
bijection. In theory, from a pure encryption point of view, nothing forces φ to
be invertible. However φ is bijective in any version of T-310 we have ever heard
of. The original documentation clearly says it must be a bijection cf. pages 47
and 56 in [80]. It appears that if φ is required to be always bijective, this will
be for security reasons, not for pure functional encryption reasons. Bijective φ
allows to maintain high entropy of the state ut at any time t.

C.1 Vanishing Differential Attacks

More importantly, this property of φ being bijective is able to prevents some
very strong attacks on block ciphers. Such attacks are very well known for
example in mobile telephone SIM cards. These attacks can be called by many
different names such as vanishing differentials, all-zero output difference attacks,
collision attacks or “Narrow-Pipe” attacks.

For example in the last 20 years it was relatively easy51 to extract keys from
SIM cards for certain mobile phone operators, and these attacks these keys ex-
ploit precisely vanishing differentials cf. [3, 4, 35, 28]. In general, the question of
avoiding such rather strong differential properties is precisely the reason why we
have many bijections in the design of block ciphers and hash functions. For ex-
ample S-boxes in SERPENT, PRESENT, GOST [9, 39] and many other ciphers
are permutations on 4 bits. In DES S-boxes are also always bijective and are on
4 bits when two (first and last) input bits are fixed [8].

C.2 Weaker Types of Vanishing Differentials

Vanishing differentials can also be applied at a different level: to a round function
of a block cipher. It is possible to see that they exist for the DES round function,
but only when we involve at least 3 consecutive S-boxes, cf. [8, 11] and they do
not exist in GOST cf. slide 255 in [35]. These properties have been carefully
engineered by the designers or DES, cf. slide 31 in [10] and [6, 8].

In T-310 it is also possible to find differentials which vanish totally. First,
this is inevitable because T () is of compressing type and cannot be bijective.
Future works are going to show how good differential properties for iterated φ
could be in the best case. However knowing that only up to 9 inputs of any of

51 We and our students have ourselves extracted large numbers of keys from SIM cards
as recently as in 2012 primarily for Chinese SIM cards, and we have also discovered
that certain European mobile operators still used COMP128v1 until 2012. The basic
attack was first outlined by Briceno-Goldberg-Wagner cf. [3], and is also described
in page 6-15 in [4] and in Section 13.1 slides 249-255 in [35]. Moreover there exist
more efficient variants of this attack cf. [28] which we have developed ourselves, cf.
slide 230 in [28] and [52], and as far as we can see the full account of these attacks
and their complexity have never yet been published so far. These attacks do not
concern SIM cards which use more recent crypto algorithms.
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the four Boolean functions Z() are repeated elsewhere (due to being an output
of D()), it is hard to imagine an impossibility result 52 here.

There exist also very simple vanishing differentials due to the fact that the
round function T does not use all the bits it potentially be using. In this cases
some bits which are flipped will be some of those not used by T cf. Table 1 page
26. This gives very good differentials for 3 rounds such that only 1 bit is flipped
at the input, and only one at the output (with same IV) cf. Section 12.2.

C.3 Related Properties: Beyond All-Zero Differentials

Departing from the vanishing differentials, in T-310 it is also possible to obtain
output differentials where exactly 35 bits out of 36 are flipped with different IVs
cf. Fact. 12.4.1.

It is not clear however if or how the properties with 1 or 35 bits flipped men-
tioned above could be exploited by the attacker. In general some relatively strong
differential properties in isolation will not yet allow to construct an interesting
differential attack.

C.4 Are Vanishing Differentials A Problem in T-310?

In T-310 it is possible to see that vanishing differentials are less a threat than in
other ciphers, due to the action of the IV which generates a complex a-periodic
pattern. However T-310 is still vulnerable to some very powerful attacks. For
example if φ was sometimes not bijective, we could have a situation where 2
encryptions with the same IV would collide for example on the first X rounds,
and then a distinguisher [possibly a ciphertext-only distinguisher based on Fried-
man’s Index of Coincidence [50, 63]] which shows that the keystream is identical
starting from this point. This would make the cipher extremely easy to break
by a software/algebraic attack or brute force attack. Such an attack would be
easy because the first X rounds use only 2X key bits and for any previous rounds
we could potentially avoid guessing the key but only the current state(s) at a
certain location(s) which would be guessing only 36 bits par cipher state u.,1−36
to be guessed.

C.5 On The Group Generated by Bijections in T-310 Cipher

The function has 3 key/IV bits s1, s2, f which makes that T-310 operates with
combinations of exactly 8 fixed permutations on 36 bits which are called φ0, . . . , φ7
in Section 1.5 in [80]. The document also calls G(P,D) the group generated by
these 8 permutations and contains some interesting results about composition
of these permutations. From the cryptanalyst point of view it is crucial that this
group G(P,D) is quite53 large.
52 For example that that we cannot find a flip on few inputs of just one of the Z() which

would vanish immediately and give the same output bit Z(.) with a probability 6= 0.
53 If this group is small, the cipher would probably insecure. The opposite does not

hold: Even if the group is so large that it contains all possible permutations, the
security can still be very poor, see [14, 15].
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C.6 Bijections vs. KT1/KT2 Classes of Long-Term Keys

It is not sufficient to say that φ should be a bijection, cf. [80]. It appears that
all currently known long-term keys cf. Section 8 lead to bijective φ, and that the
designers of two well-known classes of long-term keys KT1/KT2 have mandated
that φ is going to be a bijection. It is not hard to see that a less strict set of rules
can also lead to a bijection, cf. Section F.1, which key is NOT not compliant
with all the rules of KT1 and nevertheless gives a bijection.

Nevertheless it appears that previous publications and historical resources
have NOT mathematically proved that KT1 or KT2 will always be a bijection
or at least such a proof does not appear in [80]. This property is crucial, and we
cannot understand the security of T-310 for as long as we are not able to tell
if KT1 or KT2 rules would allow the long-term key to be non-bijective which
would allow some very powerful attacks such as described in Section C. We either
need a mathematical proof that KT1/KT2 are secure, or to demonstrate that
an attack is possible.

In this paper we finally resolve this question. First we are going to prove that
φ is invertible for one historical key numer 26 and we will also show that there is
more than one order in which the inversion can be performed. Then we provide
a complete mathematical proof how exactly the inversion can be performed for
all KT1 keys. We plan to resolve the KT2 case in a future update of this paper.

C.7 One Round Operation φ

We recall from Section 7.5 the 9 new bits which are created at each round:

(um+1,1, um+1,5, um+1,9, . . . , um+1,29, um+1,33) =

(U1, U2, U3, . . . , U8, U9) =

D(s1; um,I1)⊕T
(
f, s2, P(um,I1−4)

)
=(

um,D(1) ⊕ T9(f, s2, um,P (1−27)),

um,D(2) ⊕ T8(f, s2, um,P (1−27)), . . .

. . . um,D(9) ⊕ T1(f, s2, um,P (1−27))
)

Now in KT1 keys we have D(1) = 0. Wee have then:

U1 = sm+1,1 ⊕T9(f, sm+1,2; um,P (1), . . . , um,P (27))

U2 = um,D(2) ⊕T8(f, sm+1,2; um,P (1), . . . , um,P (27))

...

U9 = um,D(9) ⊕T1(f, sm+1,2; um,P (1), . . . , um,P (27))

C.8 How to Invert the Encryption Round φ

In this section we will show how φ can be inverted for one type of long-term key
of type KT1. We need to see how to recover all the missing nine I1 bits numbered
4, 8, 12, 16, . . . 36. All the other bits with numbers 6= 4k are already known. This
will be be done potentially in a different way for each different long-term key.
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First in Section C.9 and Fig. 3.12 we will show how this can be donee for one
particular key number 26. Then in Section C.10 Thm. C.10.1 and Fig. 3.14 we
will show it can always be done for all keys if type KT1.

If we put all the outputs of D on the left hand side, and take into account
how T () is defined w.r.t previous bit in Section 9, we have already obtained in
Section 9.2 that:

U1 ⊕ s1 = U2 ⊕ uD(2) ⊕uP (27)

U2 ⊕ uD(2) = U3 ⊕ uD(3) ⊕Z4(uP (21−26))

U3 ⊕ uD(3) = U4 ⊕ uD(4) ⊕uP (20)

U4 ⊕ uD(4) = U5 ⊕ uD(5) ⊕Z3(uP (14−19))⊕ s2
U5 ⊕ uD(5) = U6 ⊕ uD(6) ⊕uP (13)

U6 ⊕ uD(6) = U7 ⊕ uD(7) ⊕Z2(uP (7−12))

U7 ⊕ uD(7) = U8 ⊕ uD(8) ⊕uP (6)

U8 ⊕ uD(8) = U9 ⊕ uD(9) ⊕Z1(s2, uP (1−5))

U9 ⊕ uD(9) = f

Here we distinguish Z1, Z2, Z3, Z4, which by definition are 4 copies of the
same Boolean function Z() defined in Section 10.1.

C.9 Example of Inversion for Key 26
We now give a concrete example of such inversion which was developed by our
student Maria-Bristena Oprisanu (during GA18 Cryptanalysis course at Univer-
sity College London), cf. Fig. 3.12 below. We recall the necessary definitions:

j=3,7,2,6,5,8,4,9 D=0,28,4,32,24,8,12,20,16 P=8,4,33,

16,31,20,5,35,9,3,19,18,12,7,21,13,23,25,28,36,24,15,26,29,27,32,11

Accordingly for this key 26 we get the following equations:

U1 ⊕ s1 = U2 ⊕ uD(2) ⊕u11
U2 ⊕ u28 = U3 ⊕ u4 ⊕Z4(u24,15,26,29,27,32)

U3 ⊕ u4 = U4 ⊕ u32 ⊕u36
U4 ⊕ u32 = U5 ⊕ u24 ⊕Z3(u7,21,13,23,25,28)⊕ s2
U5 ⊕ u24 = U6 ⊕ u8 ⊕u12
U6 ⊕ u8 = U7 ⊕ u12 ⊕Z2(u5,35,9,3,19,18)

U7 ⊕ u12 = U8

U8 ⊕ u20 = U9 ⊕ u16 ⊕Z1(s2, u8,4,33,16,31)

U9 ⊕ u16 = f

Remark: Here in line U7 we observe that two of the ui terms have disappeared
which does always happen for KT1 keys which mandate that D(8) = P (6).

We are now ready to explain how inversion can be performed. On Fig. 3.12
below we have added numbers 0-9 in blue to show in which order different bits
u4·l, l ≤ 9 in I1 can be computed, and below we detail how they are computed.
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0 First we know u0 = s1.
1-2 We see that bits u16 and u12 can be obtained immediately from the U7, U8, U9.

3 Then we observe that P (27) = 11 which is not a multiple of 4, (a property
always true for KT1 keys cf. [76]) so u28 can be computed from U1, U2.

4 Then we observe that inputs of Z2 do not contain any multiples of 4 and are
all known. Therefore we can compute u8.

5 Then due to the fact that P (13) = D(7) for KT1 keys [76], we can compute
u24.

6 Then we observe that the only input of Z3 which is a multiple of 4 is u28
which we have already computed. So we can compute u32.

Fig. 3.12. Example of inversion of φ for key number 26.

7 Once we know u24,32 all the inputs of Z4 become known and we can compute
u4.

8 Now we know u8,4,16 and all other inputs of Z1, and we can compute u20.
9 We note that uP (20) = u36 corresponds to the bit 36 which is NOT used by

D, and is not in the image of D(), which is always mandated in KT1 keys
cf. [76]. Until now we have computed 8 input bits without computing or
using uP (20) = u36. However we need to compute this bit in order to invert
φ completely. It is now computed simply as u36 = uD(3) ⊕ uD(4) ⊕ U3 ⊕ U4.

This ends the analysis on how inversion is performed for key 26.

Overall our computation above could be very shortly written as the following
sequence of events [compact notation]:

0 16 12 P27 28 Z2 8 P13 24 Z3 32 Z4 4 Z1 20 P20 36

In general this “compact notation” solution sequence is not unique: the order
of some but not all events can be altered]. For example another possible solution
is:

0 P27 28 12 P13 16 Z2 8 24 Z3 32 Z4 4 Z1 20 P20 36

This sequence of events will be similar for other keys in KT1 class. We give
the general theorem below.
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C.10 A Proof The φ is Bijective for All KT1 Keys
This proof was also developed together with our student Maria-Bristena Oprisanu.
She also has provided the figures to illustrate it, as well as developed a software
solution for showing in which order the inversion can be performed for different
actual keys, and for checking that such solutions are correct.

For better readability we reproduce here the Fig. 5.5, we recall the compact
description of the φ function in Section 7.1.

φ
(
sm+1,1, si,2, f ; um,I1 , um,I2 , um,I3 , um,I4

)
=(

um,I2 ; um,I3 ; um,I4 ; D(sm+1,1; um,I1)⊕T
(
f, sm+1,2, P(um,I1−4)

) )

Fig. 3.13. T-310 for KT1 keys as on Fig. 5.5.

Now we recall how all this translates into a set of multivariate equations
when D(1) = 0, cf. Section 9.2 or Section C.8. We will number these equations
(1-9).

U1 ⊕ s1 = U2 ⊕ uD(2) ⊕uP (27) (1)

U2 ⊕ uD(2) = U3 ⊕ uD(3) ⊕Z4(uP (21−26)) (2)

U3 ⊕ uD(3) = U4 ⊕ uD(4) ⊕uP (20) (3)

U4 ⊕ uD(4) = U5 ⊕ uD(5) ⊕Z3(uP (14−19))⊕ s2 (4)

U5 ⊕ uD(5) = U6 ⊕ uD(6) ⊕uP (13) (5)

U6 ⊕ uD(6) = U7 ⊕ uD(7) ⊕Z2(uP (7−12)) (6)

U7 ⊕ uD(7) = U8 ⊕ uD(8) ⊕uP (6) (7)

U8 ⊕ uD(8) = U9 ⊕ uD(9) ⊕Z1(s2, uP (1−5)) (8)

U9 ⊕ uD(9) = f (9)

We have the following result:

Theorem C.10.1 (KT1 Invertibility Theorem). For every key in class KT1
as defined in Appendix B and for every 3 bits s1, s2, f the round function φ is
bijective and given the 36 outputs the internal bits and the 9 input bits of the
form 4 · k which are the only bits which are modified can be computed in the
order defined by the following sequence (written in a compact notation):
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0 D1 P27 D9 D2 D7 P13 Z2 D6 D5 Z3 D4 Z4 D3 Z1 D8 P20

Proof: We need to recover 9 bits which are of type u4k. For class KT1, cf.
Appendix B, it is easy to see that inside these u4k we have 8 which are of type
uD(i) and one which is always uP (20). All the remaining 27 bits are known from
the start, cf. Fig. 3.13 above. Thus we only need to show how to compute uD(1−9)
and then uP (20) given the U1−9.

D1 We use the notation D1 in our compact notation to say that we know from
the start that uD(1) = s1.

P27 We have P (27) 6= 0 mod 4 for KT1 keys, cf. App. B, therefore we know
uP (27).

D2 The equation (1) can be used to compute uD(2) = U1 ⊕ s1 ⊕ U2 ⊕ uP (27).
D7 Then we use the fact that P (6) = D(8) in KT1 keys, cf. App. B. Then the

equation (7) becomes U7⊕uD(7) = U8 and we can compute uD(7) = U7⊕U8.
P13 We observe that for all KT1 keys P (13) = D(7), cf. App. B.
D9 From equation (9) we get: uD(9) = U9 ⊕ f .

Fig. 3.14. A method for inverting φ which works for ANY key of type KT1.

Z2 Now we are going to show that we know all the inputs of Z2 which are
uP (7−12). which is not quite obvious. At this moment we have already ob-
tained 4 bits of the 10 planned, and they remain only SIX bits of type
u4∗k which remain unknown. These are uD(3−6), uD(8) and uP (20). Now
D(8) = P (6) cf. App. B.
In order to show that Z2(uP (7−12)) can be computed we need to show that:
{D(3 − 6), P (6), P (20)} ∩ {P (7 − 12)} = ∅. Moreover knowing that P is
injective, we can exclude 6,20 and we just need to show that: {D(3− 6)} ∩
{P (7− 12)} = ∅. Moreover, {D(3− 6)} only contains multiples of 4 and we
have P (7) = 5 and P (9) = 9 due to W conditions in App. B. It remains to
show that:
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{D(3− 6)} ∩ {P (8), P (10− 12)} = ∅
Now also following App. B, we have D(3) ∈ {P (1), P (2), P (4), P (5)} and P
is injective, so we can exclude D(3) and it remains to show that:

{D(4− 6)} ∩ {P (8), P (10− 12)} = ∅
which is exactly the last KT1 condition in Appendix B. This ends the proof
that Z2 is known.

D6 Now we compute D6 using equation (6): uD(6) = U6⊕U7⊕uD(7)⊕Z2(uP (7−12)).
D5 Then after D6 we use equation (5) to compute uD(5) as:

uD(5) = U5 ⊕ uD(6) ⊕ U6 ⊕ uP (13)

Z3 The inputs of Z3 are Z3(uP (14−19)).
At this moment they remain only FOUR bits of type u4∗k which remain
unknown. These are uD(3−4), uD(8) and uP (20). Discarding two P (20), P (6)
to injectivity of P as before, we need to show that:
It remains to show that:

{D(3− 4)} ∩ {P (14− 19)} = ∅
We have P (15) = 21 and P (18) = 25 due to W conditions. and according to
the penultimate condition in App. B, D(4) can be excluded because it says
precisely that D(4) /∈ {P (14), P (16), P (17), P (19)} and P (15) and P (18)
were already excluded as not being multiples of 4. It remains to show that:

D(3) /∈ {P (14), P (16), P (17), P (19)}
which is insured by the injectivity of P and condition pre-penultimate con-
dition in App. B which says that D(3) ∈ {P (1), P (2), P (4), P (5)}.

D4 Now that D5 and Z3 steps are done, we use equation (4) to compute uD(4)

as:

uD(4) = U4 ⊕ U5 ⊕ uD(5) ⊕ Z3(uP (14−19))⊕ s2
Z4 The next step is to compute Z4(uP (21−26)). Can this intersect with any of the

three remaining unknowns uD(3), uD(8), uP (20)? The intersection is empty as
D(8) = P (6) and D(3) ∈ {P (1), P (2), P (4), P (5)} and P injective makes
that none of these can intersect with P (21− 26).

D3 From Z4 and uD(2) we compute uD(3) using equation (2). We obtain uD(2) =
U2 ⊕ U3 ⊕ uD(3) ⊕ Z4(uP (21−26)).

Z1 This will enable the computation of Z1(s2, uP (1−5)). Can this intersect with
any of remaining unknowns uD(8), uP (20)? Again not because D(8) = P (6)
and P injective.

D8 From Z1 we can deduce uD(8) using equation (8) and we have: uD(8) =
U8 ⊕ f ⊕ Z1(s2, uP (1−5)).

P20 The last unknown is determined using equation (2): uP (20) = uD(3)⊕uD(4)⊕
U3 ⊕ U4.

This ends the proof that φ is bijective for any KT1 type key which is also a
security proof against all sorts of attacks with “Vanishing Differentials” such as
described in Section C.4, and also against all sort of correlation attacks such as
described in Sections 18 and 20.
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D A Study of KT2 Keys

D.1 Definition of KT2 Keys

D and P are injective

P (3) = 33, P (7) = 5, P (9) = 9, P (15) = 21, P (18) = 25, P (24) = 29

Let W = {5, 9, 21, 25, 29, 33}
∀1≥i≥9D(i) /∈W

α /∈W
Let T = ({0, 1, . . . , 12}\W ) ∩ ({P (1), P (2), . . . , P (24)} ∪ {D(4), D(5), . . . , D(9)} ∪ {α})

Let U = ({13, . . . , 36}\W ) ∩ ({P (26), P (27)} ∪ {D(1), D(2), D(3)})
|T\{P (25)}|+ |U\{P (25)}| ≤ 12

A = {D(1), D(2), D(3), D(4), D(5), D(6), D(7), D(8), D(9)} ∪ {P (6), P (13), P (20), P (27)}
A1 = {D(1), D(2)} ∪ {P (27)}
A2 = {D(3), D(4)} ∪ {P (20)}
A3 = {D(5), D(6)} ∪ {P (13)}
A4 = {D(7), D(8)} ∪ {P (6)}

∀(i, j) ∈ {1, . . . , 27} × {1, . . . , 9} : Pi 6= Dj

∃j1 ∈ {1, . . . , 7} : Dj1 = 0

{D(8), D(9)} ⊂ {4, 8, . . . , 36} ⊂ A
∀(i, j) ∈ 1, 27× 1, 9 : Pi 6= Dj

∃j1 ∈ 1, 7 : Dj1 = 0

{D8, D9} ⊂ {4, 8, . . . , 36} ⊂ A
∃(j2, j3) ∈ ({j ∈ 1, 4|Dj? 6∈ Aj})2 ∧

∃(j4, j5) ∈ (1, 4 \ {j1, 2j2 − 1, 2j2})× (5, 8 \ {j1, 2j2 − 1, 2j2}) ∧
∃j6 ∈ 1, 9 \ {j1, 2j2 − 1, 2j2, j4, j5} :

j2 6= j3 ∧ {4j4, 4j5} ⊂ Aj2 ∧
Aj2 ∩ (4j1 − 3, 4j1 ∪ 4j6 − 3, 4j6) 6= ∅ ∧

{8j2 − 5, 8j2} ⊂ Aj3 ∧Aj3 ∩ (4j1 − 3, 4j1 ∪ 4j6 − 3, 4j6) 6= ∅;
{D(9)} \ (33, 36 ∪ {0}) 6= ∅

{D(8), D(9), P (1), P (2), . . . , P (5)} \ (29, 32 ∪ {0}) 6= ∅
{D(7), D(8), P (1), P (2), . . . , P (6)} \ (25, 32 ∪ {0}) 6= ∅

{D(7), D(9), P (1), P (2), . . . , P (6)} \ (25, 28 ∪ 33, 36 ∪ {0}) 6= ∅
{D(6), D(7), D(8), D(9), P (1), P (2), . . . , P (12)} \ (21, 36 ∪ {0}) 6= ∅

{D(5), D(7), D(8), D(9), P (1), P (2), . . . , P (13)} \ (17, 20 ∪ 25, 36 ∪ {0}) 6= ∅
{D(7), D(8), D(9), P (1), P (2), . . . , P (6)} \ (25, 36 ∪ {0}) 6= ∅

{D(5), D(6), D(8), D(9), P (1), P (2), . . . , P (13)} \ (17, 24 ∪ 29, 36 ∪ {0}) 6= ∅
{D(5), D(6), D(7), D(9), P (1), P (2), . . . , P (13)} \ (17, 28 ∪ 33, 36 ∪ {0}) 6= ∅

{D(5), D(6), D(7), D(8), P (1), P (2), . . . , P (13)} \ (17, 32 ∪ {0}) 6= ∅
{D(5), D(6), D(7), D(8), D(9), P (1), P (2), . . . , P (13)} \ (17, 36 ∪ {0}) 6= ∅

{D(4), D(5), . . . , D(9), P (1), P (2), . . . , P (19)} \ (13, 36 ∪ {0}) 6= ∅
{D(3), D(4), . . . , D(9), P (1), P (2), . . . , P (20)} \ (9, 36 ∪ {0}) 6= ∅

plus the “Matrix rank = 9 condition” M9 defined in Section D.4 below.
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D.2 Our Approach to KT2 Keys

The description of KT2 keys in [80] is excessively complex, cf. pages 59-60,114-
115 and 117 in [80] or Appendix D.1 above. We are not sure why all these
conditions have been imposed, possibly to obtain many very strong and exact
mathematical properties and results such as Thm. 11.2.1 page 25 and many other
such results which can be found in [80]. We don’t believe that such exact results
are actually needed for a cipher to be secure, and potentially they degrade the
entropy of the long-term key down to relatively low levels, cf. Section 8.5.

D.3 A New Class of Keys KT2b

In this paper we define a new class of keys called KT2b which will contain only
a tiny subset of the conditions of KT2. The selection was made as follows: we
kept some particularly simple ones which occur for many other KT1 and KT2
keys, we also kept all those which are in some way “hard-coded” in Fig. 9.9 as
this figure comes from the original specification of T-310 cipher in [80] and also
those which avoid some particularly bizarre keys from [44] such as key 17 which
has P (25) = P (26). Then added few more conditions which are ONLY such as
we judged necessary in order to be able to prove that φ will be bijective. We are
not aware of any attack or security problem with any of the KT2b keys.

(P,D, α) ∈ KT2b⇔ all the following hold:

D and P are injective
P (3) = 33, P (7) = 5, P (9) = 9, P (15) = 21, P (18) = 25, P (24) = 29
Let W = {5, 9, 21, 25, 29, 33}
∀1≥i≥9D(i) /∈W
α /∈W
A = {D(1− 9), } ∪ {P (6), P (13), P (20), P (27)}
∀(i, j) ∈ {1, . . . , 27} × {1, . . . , 9} : Pi 6= Dj

∃j1 ∈ {1, . . . , 7} : Dj1 = 0
{D(8), D(9)} ⊂ {4, 8, . . . , 36} ⊂ A
the “Matrix rank = 9 condition” M9 defined in Section D.4 below.

Lemma D.3.1 (KT2=⇒ KT2b). Every key in class KT2 satisfies all the con-
ditions of class KT2b which are simply a subset of conditions of KT2, cf. Section
D.1 or page 60 in [80].

D.4 On M9 Condition and Matrix B

Here we provide a statement of the “Matrix rank = 9 condition” which is defined
as:

M9 :


The concrete values D(i)/P (j) inside the formulas D(s1,uI1)⊕T(f,s2,P(uI1−4))
which define the 9 “fresh” outputs I4 = {1, 5, . . . , 33} of φ appear at such places
that all the 9 “fresh” outputs I4 of φ are sums of non-linear parts of type Z(.),
plus affine parts which involve various variables in uI2−4 , plus an invertible
linear transformation B of rank 9 with the remaining 9 inputs of I1 = {4, 8, . . . , 36}.
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In addition we are going to show how to compute the coefficients of this
matrix we will call B following54 page 60 in [80]. We recall that we have in the
general case the following relations which are a standard compact way to write
φ in order.

u0
def
= s1

U9 = uD(9) ⊕ f
U8 = uD(8) ⊕ U9 ⊕ uD(9) ⊕Z1(s2, uP (1−5))

U7 = uD(7) ⊕ U8 ⊕ uD(8) ⊕uP (6)

U6 = uD(6) ⊕ U7 ⊕ uD(7) ⊕Z2(uP (7−12))

U5 = uD(5) ⊕ U6 ⊕ uD(6) ⊕uP (13)

U4 = uD(4) ⊕ U5 ⊕ uD(5) ⊕Z3(uP (14−19))⊕ s2
U3 = uD(3) ⊕ U4 ⊕ uD(4) ⊕uP (20)

U2 = uD(2) ⊕ U3 ⊕ uD(3) ⊕Z4(uP (21−26))

U1 = uD(1) ⊕ U2 ⊕ uD(2) ⊕uP (27)

We are now going to show that these equations have a certain property for
any KT2b or/and any KT2 key such that some parts can be separated because
they do not contain any numbers of type 4k, and what remains will give the
coefficients of B. More precisely we have:

Lemma D.4.1 (KT2b Separation Lemma). For every key which satisfies
the conditions in class KT2b and ignoring the last M9 condition, the 4 non-
linear functions Z() inside the round function φ depend only on variables of
I2−4 which are not modified by φ, i.e. the Z1−4() do not depend on any of the
input variables of type 4k in I1 ∪ {0}.
Proof: We recall that for every KT2b key we have:

{4, 8, . . . , 32, 36} ⊂ {D(1− 9);P (6), P (13), P (20), P (27)}
and all outputs of D and P are disjoint by definitions in KT2b. This im-
plies that the inputs of 4 non-linear functions Z() cannot contain any of the
{4, 8, . . . , 32, 36}. Moreover in KT2b one of D(1 − 7) will be 0 (which is where
uD(i) is replaced by s1 in the definition of φ). Accordingly, u0 = s1 cannot be
any of the inputs of the Z() either which are all either of the form uP (i) or s2.
This ends the proof for KT2b, and also for KT2, as KT2=⇒ KT2b, cf. Lemma
D.3.1

D.5 Computation of Matrix B

In order to write the matrix B for any KT2b or/and any KT2 key we just need
to discard all the Z() and all the numbers not in {4, 8, . . . , 32, 36} in and we will
a obtain a square 9× 9 matrix B = (bij).

54 Our matrix B will be an equivalent obtained by a linear transformation on rows
(which preserves the rank and invertibility) of the matrix B as defined in page 60 in
[80], which matrix it would be more complex to write due to the fact that the Ti are
defined a sort of recursive straight-line program cf. Section 9 and decided to keep it
that way which is very short and avoids very long summations.
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We have then (the arithmetic is done mode 2):



U1

U2

U3

U4

U5

U6

U7

U8

U9


= B ·



u4
u8
u12
u16
u20
u24
u28
u32
u36


+ C where C

def
=



f
Z1(s2, uP (1−5))
uP (6) ⊕ . . .

Z2(uP (7−12))⊕ . . .
uP (13) ⊕ . . .

Z3(uP (14−19))⊕ s2 ⊕ . . .
uP (20) ⊕ . . .

Z4(uP (21−26))⊕ . . .
uP (27) ⊕ . . .


Here ⊕ . . . denotes some additional terms and will not occur in the first two
lines, they will only occur if some of the uD() in the equations in Section D.4
above have terms which are not in {4, 8, . . . , 36}, in which case they need to be
added to C, with a replacement of u0 by s1 in one case.

To make it more concrete, in Section E.4 page 76 we show a concrete (and a
bit special) example of how this matrix looks like for one particular key.

D.6 On Invertibility of KT2 Keys

We have the following result:

Theorem D.6.1 (KT2 and KT2b Invertibility Theorem). For every key
in class KT2b and therefore also for every KT2 key and for every 3 bits s1, s2, f
the round function φ is bijective and given the 36 outputs the 9 input bits of the
form 4k can be computed by solving a linear system of rank 9.

Proof: Again due to KT2 Separation Lemma D.4.1, we know all the values in C
and B is assumed to be invertible. Therefore we can do the inversion simply as:



u4
u8
u12
u16
u20
u24
u28
u32
u36


= B−1 ·



U1

U2

U3

U4

U5

U6

U7

U8

U9


+B−1 ·C where C

def
=



f
Z1(s2, uP (1−5))
uP (6) ⊕ . . .

Z2(uP (7−12))⊕ . . .
uP (13) ⊕ . . .

Z3(uP (14−19))⊕ s2 ⊕ . . .
uP (20) ⊕ . . .

Z4(uP (21−26))⊕ . . .
uP (27) ⊕ . . .


Remark: K2 vs. KT1: In KT1 we had a very different situation, many inputs to
Z() were not initially known. Some concrete examples of this are bits 24,32,8,4,16
in Fig. 3.12 and our proof that these can be determined in the general case was
far from being trivial and required to use many specific conditions mandated
for KT1 keys, cf. Thm. C.10.1. Here for KT2 the proof is substantially simpler
overall and uses extremely few of the conditions mandated for KT2.
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E On Keys Similar to KT2

E.1 On Security of KT2 Keys and Chosen Long-Term Key Attacks

The known sources [80, 44] report only one KT2 key which is number 15 from
1979. In order to better understand the properties of these keys we are going to
show some special keys.

E.2 Some Examples Of Abnormal Keys

While trying to mathematically prove that KT2 are bijective, cf. Thm D.6.1
above, we have generated several examples of keys which satisfy all conditions
of KT2 except maybe the “Matrix rank = 9 condition” M9 of Section D.4.

Table 10. Examples of keys which would be of type KT2 except for the matrix rank
condition M9.

key nb D P rank of B

206 4,0,32,2,35,17,12,20,24 15,13,33,18,34,8,5,6,9,30,22,14,16,3,21,31,7,25,26,28,27,11,23,29,19,1,36 6
207 0,24,20,8,16,2,11,32,4 7,6,33,26,17,13,5,19,9,10,27,18,12,30,21,15,34,25,23,36,31,14,22,29,3,1,28 7
407 0,24,20,8,16,2,11,32,4 17,7,33,6,10,13,5,27,9,26,22,18,12,30,21,15,34,25,23,36,31,14,19,29,3,1,28 7
208 17,0,2,32,35,4,12,20,24 13,15,33,10,18,8,5,30,9,6,3,14,16,22,21,31,7,25,26,28,27,11,23,29,19,1,36 8

15 0,4,17,12,35,32,2,24,20 15,13,33,34,6,8,5,3,9,18,14,22,28,30,21,31,7,25,26,16,27,11,23,29,19,1,36 9

We call this sort of keys “Rank-Deficient” KT2 keys, cf. Definition 19.2.1
page 42. More such keys which satisfy less conditions can be found in Table 6
page 38.

E.3 The Anomalous Long-Term Key 207

We study the key 207 in more detail which is as follows:

D=0,24,20,8,16,2,11,32,4 P=7,6,33,

26,17,13,5,19,9,10,27,18,12,30,21,15,34,25,23,36,31,14,22,29,3,1,28

this key 207 has some55 interesting properties. We recall that this key satisfies
all the conditions for KT2 except the very last “Matrix rank = 9 condition”
M9. For this key the round function φ is not bijective (!).

In what follows we are going to show what exactly is the problem with this
long term key. We recall that KT2 mandates the matrix B to be invertible. This
is precisely is the only condition violated in our key 207, which will be easily seen
if we re-write our equations in such a way which makes this matrix B appear
explicitly.

E.4 Example of Computation of Matrix B for Key 207

We recall our set of multivariate equations cf. Section 9.2 or Section C.8. Let
zi = um+1,i in order to distinguish the inputs um,i and the outputs um+1,i

denoted simply by ui in our compact notation.

55 One particularity of this key is that it has D : IF9+2
2 → IF9

2, cf. Section 5.5.
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z1 ⊕ z5 = u24 ⊕ s1 ⊕ uP (27)

z5 ⊕ z9 = u24 ⊕ u20 ⊕ Z4(uP (21−26))

z9 ⊕ z13 = u36 ⊕ u8 ⊕ u20 ⊕ 0

z13 ⊕ z17 = u8 ⊕ u16 ⊕ s2 ⊕ Z3(uP (14−19))

z17 ⊕ z21 = u16 ⊕ u12 ⊕ uD(6)

z21 ⊕ z25 = uD(6) ⊕ uD(7) ⊕ Z2(uP (7−12))

z25 ⊕ z29 = u32 ⊕ uD(7) ⊕ uP (6)

z33 ⊕ z29 = u32 ⊕ u4 ⊕ Z1(s2, uP (1−5))

z33 = uD(9) ⊕ f
Here it is trivial to observe that the rank of B is at most 7: we have two

empty lines in B.

E.5 A Collision For Key 207

We present one example of a collision with this key where most bits are at 0,
and only very few bits are at 1, which makes this example easy to study and
easy to verify. We have found the following collision:

U (b) = φ(0, 0, 0;U (a)) = φ(0, 0, 0;U (a′))

which is also shown in Fig. 5.15 below. Here we define U (a) as all bits being
0 except two uD(5) = u16 = 1 and uP (13) = u12 = 1. Then let U (a′) is such
that all bits are 0 except uD(4) = u8 = 1 and uP (20) = u36 = 1. Finally let

U (b) = φ(0, 0, 0;U (a)). Here all bits are at 0 except four which are
z1 = 1

z5 = 1

z25 = 1

z29 = 1

One way to see how this collision can occur, is to re-write the 9 equations of
Section E.4 in such a way that bits which will be at 1 for EITHER a or a′ case
are on the left hand side, and the bits which are zero in both cases on the right
hand side. We have 1 = Z(0, 0, 0, 0, 0, 0) in all four instances of our function Z().

z1 ⊕ z5 = s1 ⊕ uD(2) ⊕ uP (27)

z5 ⊕ Z4(uP (21−26)) = uD(2) ⊕ z9 ⊕ uD(3)

u36 ⊕ u8 = z9 ⊕ uD(3) ⊕ z13
u8 ⊕ u16 ⊕ Z3(uP (14−19)) = z13 ⊕ z17 ⊕ s2

u16 ⊕ u12 = z17 ⊕ z21 ⊕ uD(6)

z25 ⊕ Z2(uP (7−12)) = z21 ⊕ uD(6) ⊕ uD(7)

z25 ⊕ z29 = uD(7) ⊕ uD(8) ⊕ uP (6)

z29 ⊕ Z1(s2, uP (1−5)) = z33 ⊕ uD(9) ⊕ uD(8)

0 = z33 ⊕ uD(9) ⊕ f
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In this form we see immediately that the both U (a) and U (a′) have an even
number of active bits on the left had side and therefore our collision is correct!
We can also view this collision on the figure below.

has the same output (U1, U2, . . . , U9) = (z33, z29, . . . , z5, z1) = (0, 1, 1, 0, 0, 0, 0, 1, 1) as:

Fig. 5.15. A collision for φ with key 207: active wires at 1 are marked with color dots.
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F Further Non-Standard Keys

F.1 An Example of Long-Term Key Which is Neither KT1 Nor
KT2

In this section we demonstrate that the set of 10 conditions for the long-term keys
specified in 256 in [76] is not quite correct and not compliant with the original
document [80]. More precisely the author of [76] has forgotten to transcribe some
additional conditions of Section 4.1. in Appendix 1 of [80] such as P (3) = 33 and
few other conditions. In order to show that the spec of [76] is indeed incomplete
we have also created (by trial and error) our own example of long-term key which
satisfies 100 % of the criteria of page 256 in [76].

D=0,24,32,4,8,28,16,20,12 P=12,32,8,

14,4,20,21,26,30,24,17,25,16,1,27,23,18,5,13,36,2,34,15,28,10,6,3

However it is easy to see that P (3) = 8 6= 33. This long-term key does not belong
to class KT1. Interestingly, it appears that for every key/IV bits we obtain a
bijection φ for a round function.

F.2 The Special Key 16 and SKS Cipher

The following non-standard key is described in [44] as a key number 16 for a
special version of T-310 cipher machine called T-310/51 instead of the usual
T-310/50. We ignore what the exact difference between these machines might
be but in [44] we read that this key 16 is approved for both T-310/50 for some
sort of testing and was also used in 1984 for testing of T-310/51.

//Der Langzeitschl{\"u}ssel 16: (1979)

D=0,35,19,23,27,11,3,15,31 P=14,19,33,

18,23,15,5,6,9,2,34,1,30,11,21,3,22,25,17,7,32,10,27,29,26,35,13

Moreover in page 42 of [80] we read that this (apparently the same key 16)
is some sort of either mathematical or an exact functional equivalent of a key
for an earlier encryption machine called SKS56.

For this LZS number 16, the state has in fact only 27 distinct active bits
instead of 36, and the other bits such as 4, 8 and many other are simply not
used, see Table 1 page 26. At the same time it still has the basic 6 properties 57

regarding the set W of Section B such as P (3) = 33. This leads to the following
situation which we depict in Fig. 6.16 below.

56 SKS is also mentioned in other T-310 sources such as [44].
57 These can be traced to Section 4.1. in Appendix 1 of [80] and they hold for all of

KT1 keys, all of KT2 keys, and also for this key 16.
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Fig. 6.16. T-310 round function based on page 119 in [80] with modifications due to the
fact that most state bits of type 4k are no longer used except D(1)=0 and P(21)=32.
We mark with green numbers bits 32, or those in W , and those XORed to the outputs
T1− T9 respectively, cf. Section 7.5.

Remark. The bit 32 in T-310 implementation of this permutation is simply
there to represent the bit 31 which is used in a later cycle clock.

F.3 Special Key 16, SKS Cipher and KT0 Key Class

It is clear from [80] that SKS cipher is older than T-310 and clearly also sub-
stantially simpler. For this reason we will informally call this key a KT0 type.

On page 48 in [80] we read that:

The function ΦT : {0, 1}36 → {0, 1}36 represents a generalization of the
mapping ΦS : {0, 1}27 → {0, 1}27 in the sense that for each pair (P,R) ∈
SG(1−27)×SG(1−9) a pair (P ′, D) exists that satisfies the conditions of
the definition of the encryption algorithm T-310, while the corresponding
function ΦT on the 27 components u1, u2, u3, u5, u6, . . . u31, u33, u34, u35
of the 36-digit vector U = (u1, u2, . . . u36) realizes the mapping ΦS .

Here ΦS denotes the round function of the SKS V/1 encryption algorithm, cf
page 47 in [80], which we conjecture to be a bijection on 27 bits.
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G An Advanced Birthday Paradox Sliding Key Recovery
Attack with d = 1

The question is now HOW to break this block cipher knowing that 120s rounds
is a large number and just one condition on 36 bits is not sufficient to uniquely
determine a key on 230 bits. The answer is that we need to combine several
variants of the above attack and apply Thm. 23.0.2 several times.

Here is one basic way to do it:

1. We will use the case d = 1 and several different s ≥ 18 such that d = 1.
2. The attacker will try 25.5 different s values, of the form s = 18 + 127u with

any 1 ≤ u ≤ 25.5. For each s and for all possible IV we apply Thm. 23.0.2.
3. The attacker test all possible 261 − 1 IVs, to discover some 261−36 = 225

“good” IVs where he has u120s = u0 = 0xC5A13E396.
4. We expect that this set of 225 “good” IVs is random, and different for each
s.

5. The attacker will store many of these “good” IVs in a hash table, he stops if
he finds a collision on 61 bits: IV,IV’ are such that IV and IV ′ are shifted
by 120 rounds, exactly (NOT a multiple of 120 rounds). To achieve this, we
store in our hash table both IV and the IV shifted by 120 steps forward.

6. Memory required is about 261 bits.
7. By birthday paradox, we need just about 230.5 cases.
8. We see that if only we try 25.5 values s and all 261 IVs, some 230.5 of which

will work, we should obtain a desired collision.
9. The data complexity is about 4 · 261+5.5 ≈ 267.5 chosen IV chosen ciphertext

decryption queries with which are 25.5 ·127 ·120 ≈ 219.5 bytes each in length.
10. The time complexity is roughly about 4 · 261+5.5+7+7 ≈ 281 CPU clocks.

For example with large probability the attacker obtains the following type
of collision: u120s+0 = u0 = 0xC5A13E396 for one IV , and u′120s′+0 = u′0 =
0xC5A13E396 for IV ′ shifted by 120 steps exactly which becomes “accidentally”
equal to IV by the birthday paradox.

We obtain a situation where u120 = u0 = 0xC5A13E396 for the the first IV .
We have obtained a P/C pair for 120 rounds exactly.

With roughly
√

8230.5 ≈ 233 times more attempts, we can obtain more than
one such colliding pairs for example 8 pairs. We expect that approximately 8
pairs will be needed in order to be able to recover the key by a SAT solver as in
Section 15. As long as this step takes less58 than

√
8 · 281 ≈ 282.5 CPU clocks,

this does NOT change the complexity of our attack.
Overall we see that we can recover the 230-bit key of T-310 with about√

8 · 267.5 ≈ 273 chosen IV chosen ciphertext decryption queries with messages
of less than 220 characters each. The time required is about 283 CPU clocks and
memory required is about 261 bits.

58 For example, in Table 1, Section 9, page 25 in [34], the time complexity is below 283

starting from 6 PC pairs and decreases with more P/C pairs. We expect a similar
result here and arguably 120 rounds of T-310 are the equivalent of 8 rounds of GOST
in terms of complexity and key usage.
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H Stream Ciphers, LFSRs and T-310

T-310 is also a stream cipher or a block cipher used in a mode which effectively
transforms a block cipher into a stream cipher. T-310 also has components which
are typically found only in stream ciphers, not in typical block ciphers. It in-
corporates an LFSR in the expansion of the IV which is the part which makes
this block cipher a-periodic which can be compared to other block ciphers where
regular periodic structure is a source of numerous attacks, e.g. GOST [34]. It is
also possible to view the matrix operation used in T-310 encryption process as
another (much smaller) LFSR which is clocked a variable number of steps.

Since Eurocrypt 2003 [23, 24, 31], many families of LFSR-based stream ci-
phers can be efficiently broken. Unhappily, compared to most traditional LFSR-
based stream ciphers the LFSRs are used in T310 in a very different way. One
is used to produce a-periodic sequence which is public (derived from the IV),
and another as a secondary re-encryption process for data already potentially
strongly encrypted. Attacks on stream ciphers have been developed initially on
ciphers with “Linear Feedback” [23, 24] which comes from LFSRs. These attacks
were later improved/enhanced to tolerate a proportion of arbitrary non-linear
components, cf. [24] and Fig. 8.17 below. We reproduce this picture here to show
that it DOES apply to T-310.
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Fig. 8.17.M successive applications of a combiner with k inputs, m outputs and l bits
of memory, a general setting in stream cipher cryptanalysis, cf. Fig. 2. in [24]

There are two major ways to apply it to T-310. In both cases we assume that

the NON-LINEAR part of the state denoted a
(t−1)
0 , . . . , a

(t−1)
l−1 in Fig. 8.17 and

in [24], is now going to be a combination of the secret key and the 36-bit block
state. Therefore the internal state will now be 266 bits: 230 key bits bits sj,1−2
which will repeat every and 36 state bits uj,0−36. Now we can:

1. Either consider that each box as on Fig. 8.17 contains one iteration of φ and
the key is encoded on 240 bits and both halves are rotated by one position
modulo 210 when they exit the box to enter the next box, then we have
(k,m, l) = (1, 10

127∗13 , 240 + 36) where m = 10
127∗13 means that we only use a

small fraction of what is output.
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2. Or consider that each box as on Fig. 8.17 contains 120iterations of φ and
the key is on 230 bits and output identical to enter the next box, then we
have (k,m, l) = (120, 120∗10127∗13 , 230 + 36).

In both cases the inputs come from one or several LFSRs, a linear component,
exactly as in [24], which means that we can potentially apply the methods and
ideas of [24]. This however will encounter very substantial difficulties: the main
idea in [24] is that the more bits are output from such sub-system connected
to one or several LFSRs, the easier it becomes to break by an algebraic attack,
and attacks are particularly strong when m is large. Here we have m ≤ 1 which
makes it very difficult to hope that we can find I/O properties such as in [24]
which eliminate all the 266 bits which are hard to predict for the attacker.

Consequently, it is clear than T-310 is a lot more robust than any stream
cipher considered in [24] or it has a non-linear part of the state updated at each
clock which is particularly important. In T-310 even the primary “internal”
sequence of bits u127j,α to which the attacker has no direct access, is produced
by a highly non-linear component, which is also bijective, making it a block
cipher. Not by a relatively small variation of an LFSR-based stream cipher.
Overall we see little hope that any of the classical attacks on stream ciphers
could be applied to T-310.

H.1 More About LFSR-based Stream Ciphers and T-310

The question is about designing an LFSR-based stream cipher with a poten-
tially an extremely robust combiner/filter component, cf. Fig. 8.17 above and
[24]. Overall the analysis of [24] can potentially be applied, at least in theory.
The main point of [24], cf. Thm. 5.1 of page 7 in eprint version is that such a
combiner/filter system could have a sort of “secondary key” in the form of I/O
polynomial equations which the input bits [public in T-310 also for u0] and the
output bits which are those used for encryption in T-310, and which ELIMI-
NATES totally all the internal variables of the combiner/filter system, which
here would be all the intermediate states ut of the T-310 block cipher and which
are denoted by ai on Fig. 2. of [24]. This is a strong result and could be ap-
plicable to T-310, it basically means that there exist a certain system of I/O
equations which could be seen as a “secondary key” for K-310, and a recovery
of these equations could be an option for the attacker.

Depending on the degree, size and sparsity of such equations this recovery
might be possible, and such “secondary key” could potentially be used to decrypt
communications routinely, under a number of technical conditions such as for
example if the system of equations would extend with additional equations which
allow to determine other unknown bits directly.
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I A Reference Implementation of T-310

We provide a simple reference implementation of T-310 in C language. It is free
to use and modify provided that the derived works contain a reference or a link
to the present paper.

//9=>1

inline int T310ZFunction(int e1,int e2,int e3,int e4,int e5,int e6)

{

int sum=

1 + e1 + e5 + e6

+ e1*e4 + e2*e3 + e2*e5 + e4*e5 + e5*e6

+ e1*e3*e4 + e1*e3*e6 + e1*e4*e5 + e2*e3*e6 + e2*e4*e6 + e3*e5*e6

+ e1*e2*e3*e4 + e1*e2*e3*e5 + e1*e2*e5*e6 + e2*e3*e4*e6 + e1*e2*e3*e4*e5

+ e1*e3*e4*e5*e6;

return sum&1;//mod 2

};

//29=>9

inline void T310TFunction(

int &t1,int &t2,int &t3,int &t4,int &t5,int &t6,int &t7,int &t8,int &t9,

int e00,int e01,int e02,int e03,int e04,int e05,int e06,int e07,int e08,int e09,

int e10,int e11,int e12,int e13,int e14,int e15,int e16,int e17,int e18,int e19,

int e20,int e21,int e22,int e23,int e24,int e25,int e26,int e27,int e28)

{

t1=e00;

t2=t1+T310ZFunction(e01,e02,e03,e04,e05,e06);t2&=1;

t3=t2+e07;t3&=1;//mod2

t4=t3+T310ZFunction(e08,e09,e10,e11,e12,e13);t4&=1;

t5=t4+e14;t5&=1;//mod2

t6=t5 +e01+ T310ZFunction(e15,e16,e17,e18,e19,e20);t6&=1;

t7=t6+e21;t7&=1;//mod2

t8=t7+T310ZFunction(e22,e23,e24,e25,e26,e27);t8&=1;

t9=t8+e28;t9&=1;

};

//hard coded part of D, NOT the only possibility

int j[9]={-1,3,7,2,6,5,8,4,9};

//hard coded part of P, NOT the only possibility

int p[28]={-1,

8,4,33,16,31,20,5,35,9,3,19,18,12,7,21,13,23,25,28,36,24,15,26,29,27,32,11};

//input x=1..9 output=0..36

int D(int x){ if(x==1) return 0; else { for(int k=1;k<=8;k++){

if(x==j[k])

{
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if(k==1) return 4; else return 4*j[k-1];//4*j_{k-1}

};}; }; printf("D(%d) undefined",x); return -9999;//should never happen

};

//input x=1..27 output=1..36

int P(int x){ return p[x]; };

//(c) Nicolas T. Courtois January 2017, and based on Klaus Schmeh:

//The East German Encryption Machine T-310 and the Algorithm It Used,

//In Cryptologia, 30: 3, pp. 251 257, 2006.

void T310BlockPhiEncryptOneRound(

int s1,int s2,int f,//extra inputs = key/IV

int o[37],//outputs [1..36]

int i[37]//inputs [1..36]: v[0]=s1 etc...

)

{

int v[37]={0};//internal 37 inputs: v[0]=s1 and last/proper 36

v[0]=s1;//one extra input

for(int k=1;k<=36;k++)

v[k]=i[k-1+1];

int j=0;

int t[10]={-1,0};//used 1..9, outputs of T

T310TFunction(

t[1],t[2],t[3],t[4],t[5],t[6],t[7],t[8],t[9],

f,s2,

v[P(1)],v[P(2)],v[P(3)],v[P(4)],v[P(5)],v[P(6)],v[P(7)],v[P(8)],v[P(9)],v[P(10)],

v[P(11)],v[P(12)],v[P(13)],v[P(14)],v[P(15)],v[P(16)],v[P(17)],v[P(18)],v[P(19)],

v[P(20)],v[P(21)],v[P(22)],v[P(23)],v[P(24)],v[P(25)],v[P(26)],v[P(27)]

);

for(j=1;j<=9;j++)

o[4*j-3]=( v[D(j)]+t[10-j] ) &1;

for(j=1;j<=9;j++)

o[4*j-2]=v[4*j-3];//starts at input v[1]

for(j=1;j<=9;j++)

o[4*j-1]=v[4*j-2];

for(j=1;j<=9;j++)

o[4*j-0]=v[4*j-1];//up to output o[36]

};
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J Some Test Vectors For T-310

key=1234567890abcdef1234567890abcdef1234567890abcdef1234567890ab

IV16=1acdef1234567890

IV2=1101011001101111011110001001000110100010101100111100010010000

Input=00011 Output=00100

K Short Documentation for Our Software Algebraic
Attack Tool

Our student Om Bhallamudi (with help from Maria-Bristena Oprisanu and Var-
navas Papaioannou) has developed an open source software solution [2] for im-
plementing software algebraic attacks on T-310 which we use in Section 15.1.

This software is a combination of several programs and we advise to run it
under any version of Windows 64-bit with Python 2.7 x64 installed. Certain files
necessary to work should be in the current directory and are the following:

codegen.py

helpers.py

argon.py

config.py

ax64.exe

minisat2.exe

cryptominisat-2.9.6-win64.exe

vcomp90.dll

These files can be obtained from [17] for example a direct download link
would be http://www.nicolascourtois.com/software/codegen last.zip or
http://www.nicolascourtois.com/software/ex64.exe or
http://www.nicolascourtois.com/software/*.py.

The basic command line reference is:

python codegen.py Nr /fix115 /insX /xl /sat /T310set26

Nr = number of rounds

X=number of instances, 8 recommended

/T310set26 uses LZS-26

/fix115 could be replaced by /fix1/2 which will fix half of the 230 key bits
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L Short Documentation For Our DC Tool

Our Differential Cryptanalysis (DC) tool [75] was written by our student Matteo
Scarlata and was used in Section 12.3. Here we provide a basic documentation.
The download link which should also contain a more up-to-date documentation
is: https://gitlab.com/mtscr/T-310

In the default mode, this tool looks for differential properties from

any delta-in to delta-outs of Hamming weight < 3. Compile with:

g++ -pedantic -Wall -std=c++11 -lcrypto -O3 -o t310-diff t310-lib.cpp

t310-diff.cpp

then run a quick demonstration:

./t310-diff -X | python2.7 counter.py

In order to make a longer computation and analyze the results later run:

./t310-diff | tee -a results.log

python2.7 counter.py results.log

### t310-diff

Basic options:

./t310-diff -r <number-of-rounds> -t <minimum-number-of-samples> -k <IV-key-bits>

-p <min-probability-to-show> -e <stop-after-x-computations>

A bigger <minimum-number-of-samples> will increase the precison of the results.

By default, the tool will iterate over all possible bitmasks (delta-in values),

this will take a long time even for few rounds.

Advanced options:

-P n: choose delta-in in the set of all the permutations of n "1" (and 36-n "0")

-X : choose delta-in of Hamming weight 1

-B <36bits-bitset> : select the active bits of the bitmask (default: all 1)

-S <36bits-bitmask> : start the computation from bitmask+1

-i : look for delta-outs of Hamming-weight >32 (experimental)

-H <delta-in-hw>: collect statistics about the distribution of delta-out

Hamming weights for a fixed delta-in Hamming weight

### counter.py

Run:

python2.7 counter.py -h

to show the help.

e.g. run:

python2.7 counter.py results1.log [results2.log ... ] -j -r <number-of-rounds>

to join the collected results for a low number of rounds in a result

for a higher number of rounds.


