Security Evaluation of GOST 28147-89
In View Of International Standardisation

Nicolas T. Courtois

University College London, Gower Street, London, UK,
n.courtois@cs.ucl.ac.uk
Abstract. GOST 28147-89 is is a well-known 256-bit block cipher which
is a plausible alternative for AES-256 and triple DES which is known to
have a much lower implementation cost, see [31]. GOST is implemented
in standard crypto libraries such as OpenSSL and Crypto++ [25,45],
and is increasingly popular and used also outside its country of origin
and on the Internet [23,24, 31]. In 2010 GOST was submitted to ISO, to
become a worldwide industrial encryption standard.
Until 2011 researchers unanimously agreed that GOST could or should
be very secure, which was summarized in 2010 in these words: “despite
considerable cryptanalytic efforts spent in the past 20 years, GOST is
still not broken”, see [31]. Unhappily, it was recently discovered that
GOST can be broken and is a deeply flawed cipher. There is a very con-
siderable amount of recent not yet published work on cryptanalysis of
GOST known to us, see [12]. One simple attack was already presented
in February at FSE 2011, see [28]. In this short paper we describe an-
other attack, to illustrate the fact that there is now plethora of attacks
on GOST, which require much less memory, and don’t even require the
reflection property [29] to hold, without which the recent attack from
[28] wouldn’t work. We are also aware of many substantially faster at-
tacks and of numerous special even weaker cases, see [12]. These will be
published in appropriate peer-reviewed cryptography conferences but we
must warn the ISO committees right now.
More generally, our ambition is to do more than just to point out that a
major encryption standard is flawed. We would like to present and sug-
gest a new general paradigm for effective symmetric cryptanalysis of so
called “Algebraic Complexity Reduction” which in our opinion is going
to structure and stimulate substantial amounts of academic research on
symmetric cryptanalysis for many years to come. This paradigm already
leads to a large number of new attacks on GOST [12], way more complex,
better and more efficient than in [28]. In this paper we will explain the
main ideas behind it and explain also the precise concept of “Black-box
Algebraic Complexity Reduction”. This new paradigm generalizes many
already known attacks on symmetric ciphers, such fixed point, slide, in-
volution, cycling and other self-similarity attacks but the exact attacks
we obtain, could never be developed previously, because only in the re-
cent 5 years it became possible to show the existence of an appropriate
last step for many such attacks, which is a low data complexity software
algebraic attack.
Key Words: Block ciphers, Feistel schemes, key scheduling, self-similarity,
reflection attacks, single-key attacks, algebraic attacks, algebraic complexity re-
duction, black-box reductions.

2 Nicolas T. Courtois, 1 May 2011

1 What Do We Know About GOST

1.1 The Official Status of GOST

GOST 28147-89 was standardized in 1989 and first it became an official standard
for the protection of confidential information but the specification of the cipher
remained confidential [21]. In 1994, the standard was declassified, published and
also translated to English [21,22]. It is also described in several more recent
Internet standards [24,23]. Unlike DES which could only be used to protect
unclassified information, and like AES, GOST allows to protect also classified
and secret information apparently without any limits, which is explicitly stated
by the Russian standard, see the first page of [22]. Therefore GOST is much
more than a Russian equivalent of DES, and its large key size of 256 bits make
GOST a plausible alternative for AES-256 and 3-key triple DES. The latter for
the same block size of 64 bits offers keys of only 168 bits. Clearly GOST is a very
serious military-grade cipher designed with most serious applications in mind.
At least two sets of GOST S-boxes have been explicitly identified as being used
by the two largest Russian banks, cf. [42,25]). These banks need to securely
communicate with tens of thousands of branches to protect assets worth many
hundreds of billions of dollars against fraud.

1.2 Basic Cryptographic Specification of GOST

GOST is a block cipher with a simple Feistel structure, 64-bit block size, 256-bit
keys and 32 rounds. Each round contains a key addition modulo 232, a set of 8
bijective S-boxes on 4 bits, and a simple rotation by 11 positions. A particularity
of GOST is that its S-boxes can be secret. and they can be used to constitute
a secondary key which is common to a given application, further extending
key size to a total of 610 bits. One set of S-boxes has been published in 1994
as a part of the Russian standard hash function specification GOST R, 34.11-
94 and according to Schneier [42] this set is used by the Central Bank of the
Russian Federation. They also appear in more recent RFC4357 [24] as being
part of the so called ”id-GostR3411-94-CryptoProParamSet”. A source code
was included in [42] however this Schneier implementation specifies apparently
a wrong (reversed) ordering of the S-boxes compared to later code contained in
Crypto++ library [45]. This precise version of GOST 28147-89 block cipher is
the most popular one, and it is commonly called just “the GOST cipher” in the
cryptographic literature. The most complete current reference implementation
of GOST which is of genuine Russian origin is a part of OpenSSL library and
contains eight standard sets of S-boxes [25]. Other (secret) S-boxes could be
recovered from a chip or implementation, see [39,17].

1.3 GOST Is Very Competitive

In addition to the very long bit keys GOST has a much lower implementation
cost than AES or any other comparable encryption algorithm. It really costs
much less than AES: for example in hardware GOST 256 bits requires less than

Security Evaluation of GOST 28147-89 3

800 GE, while AES-128 requires 3100 GE, see [31]. More than 4 time more gates
for a much lower level of security (nearly 100 times lower).

Thus it is not surprising that GOST became an Internet standard [24, 23],
it is part of many crypto libraries such as OpenSSL and Crypto++ [25,45],
and is increasingly popular also outside its country of origin [23,24,31]. In
2010 GOST was submitted to ISO to become a worldwide encryption stan-
dard. Very few crypto algorithms have ever become an international standard.
ISO/IEC 18033-3:2010 specifies the following algorithms. Four 64-bit block ci-
phers: TDEA, MISTY1, CAST-128, HIGHT and three 128-bit block ciphers:
AES, Camellia, SEED. GOST is intended to be added to the same standard
ISO/TEC 18033-3.

Now it appears that never in history of industrial standardisation, we had
such a competitive algorithm in terms of cost vs. claimed security level. GOST
also has 20 years of cryptanalysis efforts behind it, and it appears that this
claimed military-grade security level was never disputed, until now.

1.4 'What Experts Say About GOST

Nothing in the current knowledge and literature about GOST ever suggested
that it could be insecure. On the contrary, large keys and a large number of 32
rounds make that GOST seems a plausible encryption algorithm to be used for
many decades to come.

Everyone familiar with the Moore’s Law, understands that, in theory 256-bit
keys should remain secure for at least 200 years. GOST was widely studied by the
top cryptography experts active in the area of block cipher cryptanalysis such as
Schneier, Biryukov, Dunkelman, Wagner, various Australian, Japanese, German
and Russian scientists, ISO cryptography experts, and all researchers always
seemed to agree that it could be or should be secure. While it is widely under-
stood that the structure of GOST is in itself quite weak, for example compared
to DES, and in particular the diffusion is not quite as good, it was however al-
ways stipulated that this should be compensated by a large number of 32 rounds
cf. [19,42,40] and also by the additional non-linearity and diffusion provided by
modular additions [19, 34]. In [3], Biryukov and Wagner write: “A huge number
of rounds (32) and a well studied Feistel construction combined with Shannon’s
substitution- permutation sequence provide a solid basis for GOST’s security.”
In the same paper we read: “after considerable amount of time and effort, no
progress in cryptanalysis of the standard was made in the open literature”. Thus,
so far there was no significant attack on this algorithm from the point of view of
communications confidentiality: an attack which would allow decryption or key
recovery in a realistic scenario where GOST is used for encryption with various
random keys. In contrast, there are already many many papers on weak keys
in GOST [29, 3], attacks for some well-chosen number of rounds [29, 1, 40], at-
tacks with modular additions removed [3], related-key attacks [30, 16, 36], reverse
engineering attacks on S-boxes [39,17], and at Crypto 2008 the hash function
based on this cipher was broken [27]. In all these attacks the attacker has much
more freedom than we would allow ourselves here. However, as far as traditional

4 Nicolas T. Courtois, 1 May 2011

encryption applications with random keys are concerned, until now, no crypto-
graphically significant attack on GOST was ever found, which was summarized
in 2010 in these words: “despite considerable cryptanalytic efforts spent in the
past 20 years, GOST is still not broken”, see [31].

1.5 Linear and Differential Cryptanalysis of GOST

In the well known Schneier textbook we read: “Against differential and linear
cryptanalysis, GOST is probably stronger than DES”, see [42]. A basic assess-
ment of the security of GOST against linear and differential cryptanalysis has
been conducted in 2000 by Gabidulin et al, see [20,19]. The results are quite
impressive: at the prescribed security of level of 2256, 5 rounds are sufficient to
protect GOST against linear cryptanalysis. Moreover, even if the S-boxes are
replaced by identity, and the only non-linear operation in the cipher is the ad-
dition modulo 232, the cipher is still secure against linear cryptanalysis after 6
rounds out of 32. Differential cryptanalysis of GOST seems comparatively eas-
ier and have attracted more attention. Moreover, differential cryptanalysis is a
much more “practical” attack than linear cryptanalysis: it does not require an
astronomical quantity of data to be collected for one single key, which will never
occur in practice because nobody encrypts such quantities of data. Differential
cryptanalysis works also in a scenario where many different keys are used by
different people. It will then allow to break one of these keys. In [19] the authors
also estimate that, but here only w.r.t. the security level of about 2!?® 7 rounds
should be sufficient to protect GOST against differential cryptanalysis. The au-
thors also claim that “breaking the GOST with five or more rounds is very hard”.
Moreover, two Japanese researchers [40], show that the straightforward classical
differential attack with one single differential characteristic is unlikely to work
at all for a large number of rounds. This is due to the fact that when we study
reasonably “good” iterative differential characteristics for a limited number of
rounds (which already propagate with probabilities not better than 27114 per
round, cf. [40]), we realize that they only work for a fraction of keys smaller than
half. For full 32-round GOST such an attack with a single characteristic would
work only for a negligible fraction of keys of about 2752 (and even for this tiny
fraction if would propagate with a probability not better than 27360).

In the same paper [40], more advanced differential attacks on GOST are
described. They exploit sets of differentials which follow certain patterns, for
example certain S-boxes have zero differentials, other bits have non-zero differ-
entials. These are essentially distinguisher attacks on the weak diffusion of GOST
and they differ considerably from the classical differential cryptanalysis: sets of
differentials occur naturally with higher probability, and when they occur they
give much less exploitable information about the secret keys. The best advanced
multiple differential attack proposed in [40] allows to break between 12 and 17
rounds of GOST depending on the key, some keys being weaker. It is not clear
at all, if these attacks can be extended in any way to a larger number of rounds
such as full 32 rounds, because partial internal differences generated in the at-
tack become very hard to distinguish from differences which occur naturally at
random.

Security Evaluation of GOST 28147-89 5

1.6 Sliding and Reflection Attacks

According to Biryukov and Wagner, the structure of GOST, and in particular
the reversed order of keys in the last 8 rounds, makes it secure against sliding
attacks [18,2,3]. However the cipher still has a lot of self-similarity and this
exact inversion of keys allows other attacks in which fixed points are combined
with a so called “Reflection” property [27,29]. The latter attack breaks GOST
only for certain keys, which are weak keys. For these keys it is possible to break
GOST with a complexity of 2!92 and with 232 chosen plaintexts.

1.7 Recent Developments

A new attack which also uses reflection, and finally breaks GOST, was very
recently presented at FSE 2011, see [28]. The same attack was also independently
discovered by us in [12]. This attack requires about 232 bytes of memory which
makes it arguably worse even than slower attacks with less memory.

Many new attacks which also use reflections and even simultaneous multiple
reflections, which work for most GOST keys, and which allow to really break
full-round GOST with 256-bit keys, not only for some weak keys like in [29] have
been recently developed, see [12]. All these attacks require much less memory,
and some are substantially faster, see [12].

These new attacks can be seen as examples of a new general paradigm for
block cipher cryptanalysis called “Algebraic Complexity Reduction” which gen-
eralizes these attacks, and also generalizes many other known fixed point, slide,
involution and cycling attacks. Importantly, in this large family of attacks, there
are attacks which allow to cryptanalyse GOST, without any reflections, and
without any symmetric points which appear during the computations, see [12].
One example of such a novel yet simple attack which breaks GOST and does
not use any reflections is given in this paper.

2 Algebraic Cryptanalysis and Low Data Complexity
Attacks on Reduced-Round Block Ciphers

Algebraic attacks, on block and stream ciphers, can be defined as attacks in
which the problem of key recovery is written as a problem of solving a large
system of Boolean algebraic equations which follows the geometry and structure
of a particular cryptographic circuit [5-7,9,15]. The main idea was explicitly
proposed by Shannon in 1949, see [44]. For DES the idea was articulated as a
method of Formal Coding [26]. The best currently known attack on DES can
be found in [9]: it allows to break only 6 rounds of DES given only 1 known
plaintext. The most efficient attacks nowadays are based on writing ciphers as
systems of multivariate polynomial equations and manipulating these equations
using either algebraic tools (elimination algorithms such as XL, Grobner Bases
[14] and ElimLin cf. [11]) or constraint satisfaction software such as SAT solvers
which solve algebraic problems after conversion [8]. Many other methods have
been proposed recently [37,38] and for one problem instance many different
attack techniques do usually work to some extent, see [9] and though SAT solvers

6 Nicolas T. Courtois, 1 May 2011

do frequently solve many practical problems where Grobner bases run out of
memory, see [8], it was also shown in [8] that in a few cases where both methods
worked, Grobner bases methods were actually faster. We summarize all these
methods which use “solver software” to determine unknown variables inside
a complex circuit of Boolean equations under the general term of Algebraic
Cryptanalysis (AC).

2.1 Algebraic Attacks - Application to GOST

GOST is a Feistel cipher with 32 rounds. In each round we have a round function
fr; (X) with a 32-bit sub-key k;. Each round function contains a key addition
modulo 232, a set of 8 bijective S-boxes on 4 bits, and a simple rotation by 11
positions. We need to to find a way to represent the cipher as an algebraic system
of equations in such a way that it can efficiently be solved. It can be seen as
encoding the problem of key recovery as an instance of an NP-hard problem.
Both methods for encoding ciphers as such problems, and advanced heuristic
algorithms for solving such problems are in constant evolution and are constantly
improved. We have developed several efficient methods for formal encoding of
GOST block cipher in the spirit of [9] and a lot of complex encoding, conversion
and solver software for algebraic cryptanalysis. Our current best method for
GOST is pretty much the same as the best known encoding method for DES
described in [9].

Fact 1 (Key Recovery for 8 Rounds and 4 KP). Given 4 P/C pairs for
8 rounds of GOST we can find the full 256-bit key in time equivalent to 2!2°
GOST encryptions on the same software platform. The storage requirements are
negligible.

Justification: We encode the S-boxes as an algebraic system of I/O relations
(equations which relate Inputs and Outputs of these S-boxes), in a very similar
way as for DES, see [9] for more details. Furthermore, in our fastest attacks, and
also in the fastest attacks described in [9], we use about 20 additional variables
per S-box, which allow equations be more more sparse. In order to encode the
addition modulo 232 we follow the first method described in [11]. The concate-
nation of all these equations describing the whole cipher or a large chunk of it is
solved by various solver software. Given the fact that GOST has “weak diffusion”
and that overall GOST is “not too complex” compared to any other block cipher
(see [31] for the questions of gate-efficient implementation of GOST) we expect
that to some extent our systems are solvable in practice. This is confirmed by
our computer simulations.

3 On Conditional Algebraic Attacks on Ciphers

Algebraic attacks allow to cryptanalyse quite a few stream ciphers see [7, 6] but
for block ciphers they only work for a limited number of rounds, see [7, 5,9, 10].
Additional tricks are needed to reduce the complexity of an algebraic attack.
This section deals with prior art and can be omitted in the first reading.
Conditional algebraic attacks, which could also be called Guess-Then-Algebraic
attacks, make some, more or less clever assumptions on the internal variables of

Security Evaluation of GOST 28147-89 7

the cipher of key bits, and determine all the other variables. The goal is to sim-
plify the system of equations in such a way that it becomes solvable in practice.
There are many methods to achieve that, some work locally, some with larger
pieces of the cipher computation circuit.

In many cases, for example for DES [9], it turns out that the best way is
to just fix say the first 20 key variables, and determine the other. In other
ciphers, there are other highly non-trivial ways of making assumptions. In [11]
the authors study the concept of (Probabilistic) Conditional Describing Degree
of addition modulo 2". The main idea is that certain linear equations can be
added as assumptions about the internal state of the cryptosystem, and they
may produce a larger number of additional linear equations simultaneously
true with high probability.

A different and powerful method to achieve this type of simplification, at
a higher level, is to use self-similarity of the cipher and individual components
of it. Many ciphers have important high-level self-similarity properties. This is
exploited in slide attacks and in an increasing number of more sophisticated
self-similarity attacks [1,3,17,10] some of which exploit fixed points and have
nothing to do with slide attacks. In many of these attacks the last step can be an
Algebraic Cryptanalysis (AC) step. For example in one Slide-Algebraic Attack 1
on the KeeLoq block cipher [10], the attacker guesses 16 bits of the key and one
pair of the plaintexts to be a so called “slid pair”, where the two encryptions
coincide with a shift by 64 rounds. This leads to an algebraic problem of a much
smaller size and allows to break the cipher.

Our attacks and those in [12] inherit the ideas of all the attacks we mention
above: they take a quite non-trivial method for algebraic description of S-boxes
[9], a particular method for algebraic description of addition modulo 2™ [11], and
some clever tricks at the high-level description of the cipher as in [18,2,3,1,17,
10]. Our attacks on GOST bear some resemblance to certain known attacks on
KeeLoq: both GOST and KeelL.oq are ciphers relatively small block size compared
to key size, imperfect periodicity (cf. [2,3,1,10]) and weak internal structure
which is expected to be compensated by a larger number of rounds. But it isn’t
and one is able to break ful 256-bit GOST 239 times faster than brute force, and
other variants can be broken in practice, see [12]

Now it is important to see that the work of cryptanalyst for GOST (and
also many other ciphers) can be split into two independent tasks. the first task
is to achieve and further improve this type of software attacks, see [7,9,15].
this area is very technical and requires a lot of programming an optimisation.
The second task, is to see how can the complexity of GOST be reduced and
moreover this will frequently be a real “black box” reduction, so that we
can ever hope to be able to apply results such as Fact 1. We call it “Algebraic
Complexity Reduction” and we claim that that this area contains a plethora of
new combinatorial cryptanalysis tricks, which are going to produce a very large
number of non-trivial new cryptanalytic attacks in the near future (some twenty
different attacks are already given in [12]).

8 Nicolas T. Courtois, 1 May 2011

4 Algebraic Complexity Reduction

The idea stems from conditional algebraic attacks on symmetric ciphers and
generalizes many already known attacks. The main idea is as follows: In order to
reduce the attack complexity, we exploit the self-similarity of the cipher and add
some well-chosen assumptions which produce interesting and sometimes quite
non-trivial consequences due to the high-level structural properties of the ci-
pher, which makes cryptanalysis problems smaller, simpler and easier to solve.
We call this process Algebraic Complexity Reduction. In most cases what
we get is to compute (guess or determine) many internal values inside one or
several decryptions, and literally break the cipher apart into smaller pieces. It
creates new important optimisation problems in symmetric cryptanalysis:
which deals with the fundamental question of how we can reduce the complexity
of a cipher in cryptanalysis to a simpler problem, with a limited quantity of data,
and with greatly reduced complexity, and this in the best possible (optimal) way
while many interesting and non-trivial solutions will exist. Solving this type of
optimisation problems si going to create, as we anticipate, new important
NP-hard problems of cryptographic importance, and developing formal math-
ematical proofs that certain optimizations have no solution, is going to again,
as we anticipate, to create a whole new area in provable security of symmetric
ciphers against algebraic attacks(!).

4.1 Black-Box Reductions

In particular we have Black-Box Algebraic Complexity Reductions where
we obtain real black-box reductions, tom for example the same cipher with
strictly less rounds this at the cost of some well-chosen assumptions.

Algebraic Complexity Reduction is going to be a black box reduction if we
can reduce the cryptanalysis problem, to the problem of breaking exactly the
same cipher, with less rounds and less data. Most but not all such reductions
are real “black box” reductions, see [12] for a detailed discussion.

Algebraic Complexity Reduction applies principally to ciphers, which quite
commonly have a lot of self-similarity due for example to a very simple key
schedule. First a certain number of assumptions on internal variables of the
cipher, for one or several encryptions, are made. Then, if the assumptions hold,
certain well chosen variables inside the encryption circuit(s) may be guessed or
determined by the attacker. The key point is to do in such a way as to minimise
the costs and to maximise the overall cost of the attack. In order to achieve an
actual complexity reduction we need to solve a certain non-trivial combinatorial
puzzle and optimisation problem, and it is not clear at all if such a puzzle will
have a solution for any given cipher. Finally the combination of the assumptions
the guessed values and determined values, will allow the attacker to obtain a
small number of for example 4 P/C pairs for, for example for 8 rounds of the
cipher, which will be true with a certain probability, for example 2796,

Then comes the final key recovery step which given the very small quantity
of data obtained is most likely an algebraic attack. Our paradigm, especially

Security Evaluation of GOST 28147-89 9

in its Black-Box version, allows to very neatly split the task of the cryptan-
alysts in two independent tasks. The performance of each task can be studied
independently. Isn’t Algebraic Complexity Reduction already known, in
many different forms? In a sense yes. Many well-known attacks such as fixed
point, slide, involution and cycling attacks are “Algebraic Complexity Reduc-
tion” attacks. However, as more advanced attacks of this type are developed,
the quantity of data available in the last step of the attack decreases. Therefore
the importance of Algebraic Cryptanalysis and similar low-data complexity
attacks [9,13] is likely to increase in the future. In fact many of such attacks
would never been discovered, or never seen as valid cryptanalytic
tools, because only in the recent 5 years it became possible to design and
implement an appropriate last step for many such attacks. Today’s cryptanalysts
need to embrace the paradigm of Algebraic Complexity Reduction to be able to
have a better visibility of what can be done, and to drive specialization among
cryptanalysts, handling separate tasks in advanced attacks.

In what follows we will present just one attack which illustrates very well the
concept of Algebraic Complexity Reduction, with a real black box reduction,
and which also allows to break GOST.

5 High-level Structure of GOST

GOST is a Feistel cipher with 32 rounds. In each round we have a round function
fx(X) with a 32-bit key which uses a 32-bit segment of the original 256-bit key
which is divided into eight 32-bit sub-keys k = (ko, k1, k2, k3, k4, ks, ke, k7).

One 32-bit sub-key is used in each round, and their exact order is as follows:

rounds|1 8(9 16|17 24|25 32
keys kok’1k2k3k4k‘5l€6k’7 k0k1k2k3k4k5k6k7 k0k1k2k3k4k5k‘6k7 k7k6k5k4k3k2k‘1k0

Table 1. Key schedule in GOST

We write GOST as the following functional decomposition (to be read from
right to left) which is the same as used at Indocrypt 2008 [29]:

Ency =DoSofo00f& (1)

Where £ is exactly the first 8 rounds which exploits the whole 256-bit key,
S is a swap function which exchanges the left and right hand sides and does

not depend on the key, and D is the corresponding decryption function with
EoD=Do& =1Id.

10 Nicolas T. Courtois, 1 May 2011

6 How To Break GOST

We describe a relatively simple attack on GOST. It is by far not the best attack
on GOST, see [12], but it is a good illustration for our general methodology. Tt
consists of two stages. We have a black box reduction stage and key recover stage.
We proceed as follows. We consider plaintexts with a very peculiar property:
Assumption 1 (Assumption W). Let A be such that £(D) = D where D is
defined as D = £3(A).
This kind of event is very likely to happen in the real life.
Fact 2 (Property W). Given 254 KP there is on average one value A which
satisfies the Assumption. For 63% of all GOST keys at least one such A exists.
Remark: For the remaining 37 % of keys this attack fails. However many other
attacks still work, see [12].
This property has some very important consequences:
Fact 3 (Consequences of Property W). If A satisfies the Assumption W
above and defining B = £(A4) and C = £(B) we have:
1. Encg(A) = D. This is illustrated on the right hand side of Fig. 1.
2. Ency(B) = C This can be seen on the left hand side of Fig. 1.

rounds values key size

A

8 E[1] 256
B B

8 [1]e[L] 256

bits 64 64
Fig. 1. A black-box “Algebraic Complexity Reduction” from 32 to 8 rounds of GOST

This leads directly to our new reduction:
Reduction 1. [From 264 KP for 32 Rounds to 4 KP for 8 Rounds]
Given 254 known plaintexts for GOST, it is possible to obtain four P/C pairs
for 8 rounds of GOST and our guess will be correct with probability 27128,
Justification: Given 254 known plaintexts, there is on average one value A = X;
with Property W. We guess A and B and our choice is correct with probability
27128 This gives us immediately C' and D as shown on Fig. 1. For each (A, B)
this computation of (C, D) is done in constant time if we assume that all the 264
pairs X;,Y; are stored using a hash table.

Thus we obtained 4 pairs for 8 rounds of GOST:
A~ B,B+— C,C+— D,Dw D.

Resulting Attack. If we combine this with Fact 1 we get an attack which
breaks GOST given 24 known plaintexts, time is 28 times faster than brute
force. The storage required is for the 264 known P/C pairs. GOST is broken.

Security Evaluation of GOST 28147-89 11

7 Conclusion

GOST was designed to provide a military level of security and to last 200 years.
Most major block cipher encryption experts have studied GOST, and in 2010
the consensus was still to say that “despite considerable cryptanalytic efforts
spent in the past 20 years, GOST is still not broken”, see [31]. In 2010 GOST
was submitted to ISO to become a worldwide encryption standard.

The general idea of Algebraic Cryptanalysis has been around for more than
60 years [44, 26]. Yet only in the last 10 years several efficient software tools for
solving various NP-hard problems involved have been developed, while numerous
specific vulnerabilities leading to efficient attacks of this type have been found.
A number of stream ciphers are indeed broken [7, 6, 15]. However only one block
cipher KeelLoq could so far be shown to be weak enough, to be broken using an
algebraic attack [10]. In this paper we break another important real-life block
cipher GOST. It is the first time in history that a standard government
block cipher is broken by an algebraic attack.

One simple MITM-Reflection attack on GOST was already presented this
February 2011 at FSE 2011 conference, see [28]. In this short paper we describe
just one another attack, to illustrate the fact that there is now many other
attacks on GOST, many of which are faster (see [12]) and all of which including
the one presented here, are algebraic attacks which require fundamentally much
less memory and create an infinitely more possibilities for the attacker to break
the cipher in various ways. Also, in this paper, we already establish that one
does not need the reflection property [29] to break GOST.

Clearly GOST is deeply flawed, in more than one way, and GOST does not
provide the security level required by ISO. A plethora of other attacks
following our general idea and paradigm for symmetric cryptanalysis, called “Al-
gebraic Complexity Reduction” is given in [12]. With this framework which we
amply describe here and illustrate with one attack, we ambition to considerably
enlarge the spectrum of self-similarity attacks on block ciphers.

We must also report some facts, known to us, and the reader will excuse us
for not being able to give more details now, but this is very important for the
sake of (still ongoing process as it seems) of ISO standardisation. There is much
more than just a “certificational” attack on GOST faster than brute force [28].
In fact to standardize GOST now would be really dangerous and irresponsible.
This is because some of our attacks are feasible in practice. Some GOST
keys can indeed be decrypted in practice. See [12] and our forthcoming publica-
tions on the same topic, for a detailed discussion of cases in which this will be
possible. It appears that also that it is for the first time in history that a
major standardized block cipher intended to provide a military-grade
level of security and intended to be protect also classified and secret
documents, for the government, large banks and other organisations,
is broken by a mathematical attack, where some messages can be
decrypted in practice with today’s computers.

12

Nicolas T. Courtois, 1 May 2011

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

Eli Biham, Orr Dunkelman, Nathan Keller: Improved Slide Attacks, In FSE 2007,
LNCS 4593 Springer 2007, pp. 153-166.

A. Biryukov, D.Wagner: Slide Attacks, In proceedings of FSE’99, LNCS 1636, pp.
245-259, Springer, 1999.

Alex Biryukov, David Wagner: Advanced Slide Attacks, In Eurocrypt 2000, LNCS
1807, pp. 589-606, Springer 2000.

Christophe De Canniere: GOST article, In ENCYCLOPEDIA OF CRYPTOGRA-
PHY AND SECURITY 2005, pp. 242-243.

Nicolas Courtois and Josef Pieprzyk: Cryptanalysis of Block Ciphers with Overde-
fined Systems of Equations, Asiacrypt 2002, LNCS 2501, pp.267-287, Springer.

. Nicolas Courtois and Willi Meier: Algebraic Attacks on Stream Ciphers with Linear

Feedback, Eurocrypt 2003, LNCS 2656, pp. 345-359, Springer. An extended version
is available at http://www.minrank.org/toyolili.pdf

Nicolas Courtois: General Principles of Algebraic Attacks and New Design Criteria
for Components of Symmetric Ciphers, in AES 4, LNCS 3373, pp. 67-83, Springer,
2005.

Gregory V. Bard, Nicolas T. Courtois and Chris Jefferson: Efficient Methods for
Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomi-
als over GF'(2) via SAT-Solvers, http://eprint.iacr.org/2007/024/.

Nicolas Courtois, Gregory V. Bard: Algebraic Cryptanalysis of the Data Encryp-
tion Standard, In Cryptography and Coding, 11-th IMA Conference, pp. 152-169,
LNCS 4887, Springer, 2007. Preprint available at eprint.iacr.org/2006/402/.
Nicolas Courtois, Gregory V. Bard, David Wagner: Algebraic and Slide Attacks on
KeeLoq, In FSE 2008, pp. 97-115, LNCS 5086, Springer, 2008.

Nicolas Courtois and Blandine Debraize: Algebraic Description and Simultaneous
Linear Approximations of Addition in Snow 2.0., In ICICS 2008, 10th International
Conference on Information and Communications Security, 20 - 22 October, 2008,
Birmingham, UK. In LNCS 5308, pp. 328-344, Springer, 2008.

Nicolas Courtois: Algebraic Complexity Reduction and Cryptanalysis of GOST, 17
February 2011, 28 pages, original preprint submitted to Crypto 2011. MD5 Hash
is d1e272a75601405d156618176cf98218. SHA-1 Hash is 6C16C46E 00AFD74B
3ED4949B 7766D5BF 6 EC7TDDBB. the fastest attack on full-round 256-bit GOST
presented in this paper has a time complexity of 22'%. The paper also contained
also one nearly-practical attack on a well-known practical variant of GOST which
allows to decrypt some keys in practice. Many more important attacks were added
later, current version has 54 pages, to be published soon, probably wil be split in
several pieces.

Charles Bouilleguet, Patrick Derbez, Orr Dunkelman, Nathan Keller, Pierre-Alain
Fouque: Low Data Complexity Attacks on AES, Cryptology ePrint Archive, Report
2010/633. http://eprint.iacr.org/2010/633/.

Jean-Charles Faugere: A new efficient algorithm for computing Grébner bases with-
out reduction to zero (F5), Workshop on Applications of Commutative Algebra,
Catania, Italy, 3-6 April 2002, ACM Press.

Gwenolé Ars, Jean-Charles Faugere: An Algebraic Cryptanalysis of Nonlinear
Filter Generators using Grobner Bases INRIA research report, available at
https://hal.ccsd.cnrs.fr/.

Fleischmann Ewan, Gorski Michael, Huehne Jan-Hendrik, Lucks Stefan: Key re-
covery attack on full GOST block cipher with zero time and memory, Published
as ISO/IEC JTC 1/SC 27 N8229. 2009.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Security Evaluation of GOST 28147-89 13

Soichi Furuya: Slide Attacks with a Known-Plaintext Cryptanalysis, In ICISC 2001,
LNCS 2288, 2002, pp. 11-50.

E. K. Grossman, B. Tuckerman: Analysis of a Weakened Feistel-like Cipher, 1978
International Conference on Communications, pp.46.3.1-46.3.5, Alger Press Lim-
ited, 1978.

Vitaly V. Shorin, Vadim V. Jelezniakov and Ernst M. Gabidulin: Linear and Dif-
ferential Cryptanalysis of Russian GOST, Preprint submitted to Elsevier Preprint,
4 April 2001

V.V. Shorin, V.V. Jelezniakov, E.M. Gabidulin Security of algorithm GOST 28147-
89, (in Russian), In Abstracts of XLIII MIPT Science Conference, December 8-9,
2000.

I. A. Zabotin, G. P. Glazkov, V. B. Isaeva: Cryptographic Protection for Infor-
mation Processing Systems, Government Standard of the USSR, GOST 28147-89,
Government Committee of the USSR for Standards, 1989. In Russian, translated
to English in [22].

An English translation of [21] by Aleksandr Malchik with an English Preface co-
written with Whitfield Diffie, can be found at http://www.autochthonous.org/
crypto/gosthash.tar.gz

Vasily Dolmatov, Editor, RFC 5830: GOST 28147-89 encryption, decryption and
MAC algorithms, IETF. ISSN: 2070-1721. March 2010. http://tools.ietf.org/
html/rfc5830

V. Popov, I. Kurepkin, S. Leontie: RFC 4357: Additional Cryptographic Algo-
rithms for Use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001,
and GOST R 34.11-94 Algorithms, IETF January 2006. http://tools.ietf.org/
html/rfc4357

A Russian reference implementation of GOST implementing Russian algorithms
as an extension of TLS v1.0. is available as a part of OpenSSL library. The file
gost89.c contains eight different sets of S-boxes and is found in OpenSSL 0.9.8 and
later: http://www.openssl.org/source/

J. Hulsbosch: Analyse van de zwakheden van het DES-algoritme door middel van
formele codering, Master thesis, K. U. Leuven, Belgium, 1982.

Florian Mendel, Norbert Pramstaller, Christian Rechberger, Marcin Kontak and
Janusz Szmidt: Cryptanalysis of the GOST Hash Function, In Crypto 2008, LNCS
5157, pp. 162 - 178, Springer, 2008.

Takanori Isobe: A Single-Key Attack on the Full GOST Block Cipher, In FSE
2011, Fast Software Ecnryption, Springer LNCS, 2011.

Orhun Kara: Reflection Cryptanalysis of Some Ciphers, In Indocrypt 2008, LNCS
5365, pp. 294-307, 2008.

John Kelsey, Bruce Schneier, David Wagner: Key-schedule cryptanalysis of IDEA,
G-DES, GOST, SAFER, and triple-DES, In Crypto’96, LLNCS 1109, Springer,
1996.

Axel Poschmann, San Ling, and Huaxiong Wang: 256 Bit Standardized Crypto for
650 GE GOST Revisited, In CHES 2010, LNCS 6225, pp. 219-233, 2010.

J. Pieprzyk and L. Tombak, Soviet Encryption Algorithm, Preprint 94-10, Depart-
ment of Computer Science, The University of Wollongong, 1994

C. Charnes, L. O’Connor, J. Pieprzyk, R. Savafi-Naini, Y. Zheng: Further com-
ments on GOST encryption algorithm, Preprint 94-9, Department of Computer
Science, The University of Wollongong, 1994.

C. Charnes, L. O’Connor, J. Pieprzyk, R. Savafi-Naini, Y. Zheng: Comments on So-
viet encryption algorithm, In Advances in Cryptology - Eurocrypt’94 Proceedings,
LNCS 950, A. De Santis, ed., pp. 433-438, Springer, 1995.

14

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Nicolas T. Courtois, 1 May 2011

J.-J. Quisquater and Y. Desmedt and M. Davio: The Importance of ‘good’ Key
Scheduling Schemes (How to make a secure DES scheme with < 48 bit keys?, In
Crypto’85, LNCS 218, pp. 5637-542, Springer, 1985.

Vladimir Rudskoy: On zero practical significance of Key recovery attack on full
GOST block cipher with zero time and memory,

Igor Semaev: Sparse Algebraic Equations over Finite Fields, SIAM J. Comput.
39(2): 388-409 (2009).

Haavard Raddum and Igor Semaev: New Technique for Solving Sparse Equation
Systems, ECRYPT STVL website, January 16th 2006, available also at eprint.
iacr.org/2006/475/

Markku-Juhani Saarinen: A chosen key attack against the secret S-boxes of GOST,
unpublished manuscript, 1998.

Haruki Seki and Toshinobu Kaneko: Differential Cryptanalysis of Reduced Rounds
of GOST. In SAC 2000, Selected Areas in Cryptography, Douglas R. Stinson and
Stafford E. Tavares, editors, LNCS 2012, pp. 315323, Springer, 2000.

I. Schaumuller-Bichl: Cryptanalysis of the Data Encryption Standard by the
Method of Formal Coding, In Cryptography, Proc. Burg Feuerstein 1982, LNCS
149, T. Beth editor, Springer-Verlag, 1983.

Bruce Schneier: Section 14.1 GOST, in Applied Cryptography, Second Edition,
John Wiley and Sons, 1996. ISBN 0-471-11709-9.

Bruce Schneier, The GOST Encryption Algorithm, Dr. Dobbs Journal, Vol. 20,
No. 2, 1995.

Claude Elwood Shannon: Communication theory of secrecy systems, Bell System
Technical Journal 28 (1949), see in particular page 704.

Wei Dai: Crypto++, a public domain library containing a reference C++ imple-
mentation of GOST and test vectors, http://www.cryptopp.com

